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In this document I describe the details of implementing the computational method developed

in “A Toolbox for Solving and Estimating Heterogeneous Agent Macro Models.” I frame the

discussion in the context of the Krusell and Smith (1998) model, which has become the benchmark

for testing solution methods in the heterogeneous agent literature. However, the method itself is

general and the steps taken here can be used as a template for solving other heterogeneous agent

models as well. Matlab and Dynare codes should be provided with this document, but if not they

are available at http://faculty.chicagobooth.edu/thomas.winberry. Codes for solving the

Khan and Thomas (2008) heterogeneous firm model from the main text are also available there.

1 Model

I keep my exposition brief since the model is well known.

Households There is a continuum of households indexed by j ∈ [0, 1], each with preferences over

consumption cjt represented by the expected utility function

E

∞∑
t=0

βt
c1−σjt − 1

1− σ ,
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where β is the subjective discount factor and 1
σ is the elasticity of intertemporal substitution.

Each household supplies εjt effi ciency units of labor to the labor market inelastically. εjt is

distributed independently across households but within households follows a two-state Markov

process εjt ∈ {ε0 = 0, ε1 = 1} with transition probabilities π (ε′|ε). Households with εjt = 1

receive after-tax labor earnings wt (1− τ) where wt is the real wage. Households with εjt = 0

receive unemployment benefits bwt financed by the labor tax. The government’s budget is balanced

each period, implying that τ = b(1−L)
L , where L is the mass of households with εjt = 1 (note that

L is constant because the transition probabilities π (ε′|ε) are constant over time).

Asset markets are incomplete; households can only trade in capital ajt+1 subject to the bor-

rowing constraint ajt+1 ≥ a = 0. Capital pays real return rt.

Firms There is a representative firm which produces output Yt according to the production

function

Yt = eztKα
t L

1−α,

where zt is an aggregate productivity shock, Kt is the aggregate capital stock, L is aggregate labor,

and α is the capital share. In equilibrium, factor prices are given by

rt = αeztKα−1
t L1−α − δ

wt = (1− α) eztKα
t L
−α,

where δ is the depreciation rate of capital. Aggregate TFP follows the AR(1) process

zt+1 = ρzzt + σzωt+1, where ωt+1 ∼ N(0, 1).

Equilibrium The aggregate state of this economy is st = (zt, µt), where µt is the distribution

of households over (ε, a)-pairs. A recursive competitive equilibrium is a list of functions

a′ (ε, a; z, µ), r (z, µ), w (z, µ), and µ′ (z, µ) such that
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1. (Household optimization) Taking r (z, µ), w (z, µ), and µ′ (z, µ) as given, a′ (ε, a; z, µ) satisfies

c (ε, a; z, µ)−σ ≥ βE
[(

1 + r
(
z′, µ′ (z, µ)

))
c
(
ε′, a′ (ε, a; z, µ) ; z′, µ′ (z, µ)

)−σ |ε, z, µ] ,
with equality if a′ (ε, a; z, µ) > a,

where c (ε, a; z, µ) = w (z, µ) ((1− τ) ε+ b (1− ε)) + (1 + r (z, µ)) a − a′ (ε, a; z, µ) is optimal

consumption.

2. (Firm optimization and market clearing) Prices r (z, µ) and w (z, µ) satisfy

r (z, µ) = αezKα−1L1−α − δ

w (z, µ) = (1− α) ezKαL−α,

where K =
∑

ε

∫
adµ (ε, a) is aggregate capital.

3. (Evolution of distribution) For all measurable sets ∆a,

µ′ (z, µ) (ε,∆a) =
∑
ε̃

π (ε|̃ε)
∫

1
{
a′ (ε̃, a; z, µ) ∈ ∆a

}
µ (ε̃, da) .

2 The Solution Method

As described in the main text, the method follows three main steps:

1. Approximate the equilibrium objects using finite-dimensional objects.

2. Compute the stationary equilibrium of the approximated model without aggregate shocks

(but still with idiosyncratic shocks).

3. Compute the aggregate dynamics of the approximated model using by perturbing it around

steady state.

In this section I describe the details of how to perform each of these steps in the context of

the Krusell and Smith (1998) model. Most of the work is in the first step; after approximating

the equilibrium using finite-dimensional objects, the model is in the general form considered in the
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perturbation literature, so one can follow general steps. I therefore spend most attention in step

1, illustrating different choices that may be useful in alternative models as well.1 This section

assumes the reader is familiar with the main text.

2.1 Step 1: Approximate Equilibrium Using Finite-Dimensional Approxima-

tions

As in the main text, the goal of this section is to have a finite-dimensional representation of the

model for a given time period t. However, the model contains two infinite-dimensional objects: the

distribution of households and their decision rules. I approximate each of these in turn. Through-

out, I follow the notational convention that an equilibrium object conditional on a realization of

the aggregate state (zt, µt) is simply represented by a time subcript t.

Distribution Since the households’ decisions involve the occasionally binding borrowing con-

straint ajt+1 ≥ a, the distribution of households features a positive mass at a. To account for this,

I separately approximate the mass of households at the constraint and the distribution of firms

away from the constraint.

Mass at Constraint Denote the fraction of households with labor productivity ε at the

borrowing constraint with a scalar m̂ε. These scalars must follow the law of motion

m̂ε,t+1 =
1

π (ε)
[
∑
ε̃

(
1− m̂ε̃,t

)
π (ε̃)π (ε|̃ε)

∫
1
{
a′t (ε̃, a) = a

}
gε̃,t (a) da

+
∑
ε̃

m̂ε̃,tπ (ε|̃ε)π (ε̃) 1
{
a′t (ε̃, a) = a

}
],

where π (ε) is the mass of households with productivity ε and gε,t (a) is the p.d.f. of households

with a > a.

1 In addition, the replication codes for the Khan and Thomas (2008) model show how to use the method to compute
a model with two continuous individual states.
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Distribution Away from Constraint I assume that the distribution of households over

assets a > a can be approximated using the p.d.f. gε,t (a):

gε,t (a) ' g0ε,t exp

{
g1ε,t
(
a−m1

ε,t

)
+

ng∑
i=2

giε,t

[(
a−m1

ε,t

)i −mi
ε,t

]}
, (1)

where ng indexes the degree of approximation,
{
giε,t
}ng
i=0

are parameters, and
{
mi
ε,t

}ng
i=1

are cen-

tralized moments of the distribution. The parameters gε,t and moments mε,t must be consistent

with each other:

m1
ε,t =

∫
agε,t (a) da (2)

mi
ε,t =

∫ (
a−m1

ε,t

)i
gε,t (a) da for i = 2, ..., ng.

Through these consistency conditions (2), the moments mε,t completely determine the parameters

of the distribution gε,t.

Since the distribution is characterized by its moments mt, I approximate the law of motion

by deriving a law of motion for these moments. The evolution of the moments is implied by the

decision rules:

m1
ε,t+1 =

1

π (ε)
[
∑
ε̃

(
1− m̂ε̃,t

)
π (ε̃)π (ε|̃ε)

∫
a′t (ε̃, a) gε̃,t (a) da

+
∑
ε̃

m̂ε̃,tπ (ε̃)π (ε|̃ε) a′t (ε̃, a)]

mi
ε,t+1 =

1

π (ε)
[
∑
ε̃

(
1− m̂ε̃,t

)
π (ε̃)π (ε|̃ε)

∫ [
a′t (ε̃, a)−m1

ε,t+1

]i
gε̃,t (a) da

+
∑
ε̃

m̂ε̃,tπ (ε|̃ε)π (ε̃)
[
a′t (ε̃, a)−m1

ε,t+1

]i
],

for i = 2, ..., ng.

I numerically approximate the integrals
∫
a′t (ε̃, a) gε̃,t (a) da and

∫
[a′t (ε̃, a) − m1

ε,t+1]
igε̃,t (a) da

using Gauss-Legendre quadrature. This quadrature specifies nodes {aj}mgj=1 and weights {ωj}
mg
j=1,

where mg is the order of the quadrature, and approximates the integrals with the finite sums∑mg
j=1 ωj ×a′t (ε̃, aj) gε̃ (aj) and

∑mg
j=1 ωj ×

[
a′t (ε̃, aj)−m1′

ε

]i
gε̃,t (aj). I use the same quadrature to
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compute the aggregate capital stock from the distribution:

Kt =
∑
ε

π (ε)

mg∑
j=1

ωjajgε,t (aj) ,

This implies that the factor prices can be written

rt = αeztKα−1
t L1−α − δ

wt = (1− α) eztKα
t L
−α.

Household Decision Rules The main challenge in approximating households’decision rules is

that they face the occasionally binding borrowing constraint a. Nonconvexities such as this are

common in the heterogeneous agent literature, so in the codes I provide two options for approximat-

ing the decision rules: either approximate the savings decisions with linear splines, which directly

take the constraint into account, or approximate the conditional expectation of future consumption

with polynomials, which smooths over the kink. In this particular model I have found the poly-

nomial approximation of the conditional expectation to be more effi cient so I describe that here.

However, in other models it may be necessary to use splines; for details, see the codes.2

Approximate Conditional Expectation with Chebyshev Polynomials Define the

conditional expectation function:

ψt (ε, a) = E
[
β (1 + rt+1) ct+1

(
ε′, a′t (ε, a)

)−σ] , (3)

The advantage of this formulation is that the expectation operator smooths over kinks in the savings

or consumption policies. The savings and consumption policies can be derived from the conditional

expectation through the conditions

a′t (ε, a) = max
{
a,wt ((1− τ) ε+ b (1− ε)) + (1 + rt) a− ψt (ε, a)−

1
σ

}
ct (ε, a) = wt ((1− τ) ε+ b (1− ε)) + (1 + rt) a− a′t (ε, a) ,

2On some older computers, people have found that the spline approximation is actually faster than the polynomial
approximation, presumably because the Dynare pre-processor has less complicated equations to parse.
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where the first line uses the fact that, if the borrowing constraint is not binding, the optimal decision

follows the Euler Equation

(
wt ((1− τ) ε+ b (1− ε)) + (1 + rt) a− a′t (ε, a)

)−σ
= ψt (ε, a) .

I approximate the conditional expectation function using Chebyshev polynomials:

ψ̂t (ε, a) ' exp

{ nψ∑
i=1

θεi,tTi (ξ (a))

}
, (4)

where nψ is the order of approximation, Ti is the ith order Chebyshev polynomial, and ξ (a) =

2a−aa−a −1 transforms the interval [a, a] to [−1, 1] (on which the Chebyshev polynomials are defined),

and the θs are coeffi cients.

Given this approximation of the conditional expectation function, I approximate the household’s

optimality conditions using collocation, which forces the optimality condition to hold exactly on a

set of nodes {aj}
nψ
j=1:

exp

{ nψ∑
i=1

θεi,tTi (ξ (aj))

}
= E

[
β (1 + rt+1)

∑
ε′

π
(
ε′|ε
)
ĉt
(
ε′, â′t (ε, aj)

)−σ] ,
where

â′t (ε, aj) = max


a,wt ((1− τ) ε+ b (1− ε))

+ (1 + rt) aj −
(
exp

{∑nψ
i=1 θεi,tTi (ξ (aj))

})− 1
σ


ĉt (ε, aj) = wt ((1− τ) ε+ b (1− ε)) + (1 + rt) aj − â′t (ε, aj) .

Approximate Equilibrium Conditions With all of the approximations, the equilibrium be-

comes computable, replacing the true aggregate state (z, µ) with (z,m), the true distribution with

the parametric family (1), and the true conditional expectation with the Chebyshev approxima-

tion (4). To collect these conditions into the general form of Schmitt-Grohe and Uribe (2004),

define the state vector xt= (zt,mt)
′, which contains the predetermined variables, and the control

vector yt= (θt,gt, rt, wt)
′, which contains the non-predetermined variables. Then the equilibrium
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is characterized by the function

f
(
yt,yt+1,xt,xt+1;χ

)
=



m1′
ε,t − 1

π(ε) [
∑

ε̃

(
1− m̂ε̃,t

)
π (ε̃)π (ε|̃ε)

∑
j ωja

′
t (ε̃, aj) gε̃,t (aj)

+
∑

ε̃ m̂ε̃,tπ (ε̃)π (ε|̃ε) a′t (ε̃, a)]

mi′
ε,t − 1

π(ε) [
∑

ε̃

(
1− m̂ε̃,t

)
π (ε̃)π (ε|̃ε)

∑
j

[
a′t (ε̃, aj)−m1′

ε,t

]i
gε̃,t (aj)

+
∑

ε̃ m̂ε̃,tπ (ε̃)π (ε|̃ε)
[
a′t (ε̃, a)−m1′

ε

]i
]

exp
{∑nψ

i=1 θεi,tTi (ξ (aj))
}
− β (1 + rt+1)

∑
ε′ π (ε′|ε) ĉt (ε′, â′t (ε, aj))

−σ

m1
ε,t −

∑
j ωjajgε,t (aj)

mi
ε,t −

∑
j ωj

(
aj −m1

ε,t

)i
gε,t (aj)

rt −
(
αeztKα−1

t L1−α − δ
)

wt − (1− α) eztKα
t L
−α

zt+1 − ρzzt − χ× σzωt+1


such that

Et
[
f
(
yt,yt+1,xt,xt+1;χ

)]
= 0, (5)

where χ is the perturbation parameter.

A solution to the model (5) is a function g which sets the control variable as a function of states,

yt = g (xt;χ), and a function h which controls the law of motion for states, xt+1 = h (xt;χ) + χ×

ηωt+1, where η =
(
1,02ng

)′. I will now approximate these h and g in the remaining steps. Next,

in Step 2, I compute the stationary equilibrium without aggregate shocks. Then, in Step 3, I

compute the aggregate dynamics by perturbing the system around this stationary equilibrium.

2.2 Step 2: Solve for Stationary Equilibrium

In terms of the notation defined above, the stationary equilibrium of the model is represented by two

vectors, x∗ and y∗, such that f (y∗,y∗,x∗,x∗; 0) = 0. In principle this is just a non-linear system
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of equations which could be solved using standard numerical techniques. However, in practice the

system is large, so numerical algorithms are unstable. Instead, I stationary equilibrium in terms

of a single non-linear equation in the aggregate capital stock K, which must solve the following

root-finding problem as in Aiyagari (1994):

1. Compute factor prices r = αKα−1L1−α − δ and w = (1− α)KαL−α.

2. Solve for the conditional expectation function θ.

3. Using the implied decision rules, solve for the invariant distributionm and implied parameters

g.

4. Update aggregate capital K ′ =
∑

ε π (ε)
∑mg

j=1 ωj × a′ (ε, aj) gε (a).

5. Return K ′ −K and solve for a zero of this equation.

For more details of the individual steps, see the included code steadystate.m.

2.3 Step 3: Solve for Aggregate Dynamics

Given the value of x∗ and y∗ in the stationary equilibrium, all that we need to do is import the

model equations in Dynare; Dynare will then differentiate these equations, evaluate them at their

stationary values, and solve the resulting system. The main challenge in importing the model

into Dynare is that Dynare does not accept matrix expressions, which are used heavily in the

steady state code. I therefore re-write these matrix expressions as loops over scalar variables using

Dynare’s macro-processor.

The Dynare code has four main parts; for full details, see the code dynamics.mod. First,

I declare the parameters of the model, which include not only the economic parameters but also

approximation parameters, such as the grids and polynomial terms. Second, I declare the variables

of the model, which are the contents of the vectors x and y. Third, I specify the model equations,

relying heavily on the macro-processor loops. Finally, I instruct Dynare to take a first order

expansion of the model and perform its default analysis.
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Table 1: Parameterization

Parameter Description Value Parameter Description Value

β Discount factor .96 ε0 Unemployed productivity 0

σ Utility curvature 1 ε1 Employed productivity 1

a Borrowing constraint 0 π (ε0 → ε1) U to E transition .5

α Capital share .36 π (ε1 → ε0) E to U transition .038

δ Capital depreciation .10 ρz Aggregate TFP AR(1) .859

b UI replacement rate .15 σz Aggregate TFP AR(1) .014

Notes: Annual parameterization, chosen for illustrative purposes.

Higher Order Approximations In principle, Dynare will compute a higher order expansion

of the aggregate dynamics by changing the option order=1 to order=2 or order=3. Unfortunately,

this will typically cause Dynare to crash in evaluating and storing the derivatives of the model’s

equilibrium conditions; in order to evaluate these derivatives, Dynare creates many temporary

variables, which causes Matlab’s workspace to run out of space. However, this problem can be

avoided by using the use_dll option in Dynare’s model block. use_dll instructs Dynare to

evaluate the derivatives in a compiled .mex function, which is evaluated outside of Matlab, and

therefore does not run into the workspace limit. Unfortunately, this option significantly increases

the time it takes for Dynare to pre-process the model. At this point there is no way around this

issue, but recall that this pre-processing time is a fixed cost which does not need to be re-performed

in each iteration of an estimation exercise.

3 Results

The parameters of the model are contained in Table 1. The model frequency is one year. The

transition matrix for idiosyncratic shocks implies an aggregate employment rate of .93 and a mean

duration of unemployment of 1 year.

The steady state household decision rules are plotted in Figure 1. Thee savings function

is approximately linear for all of the state space except very close to the borrowing constraint.
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Figure 1: Individual Decision Rules in Steady State

(a) Savings policy (b) Consumption policy
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Notes: Solution to individual problem in steady state. (a) plots the expectation of next period’s marginal utility of
consumption, conditional on the current state. (b) plots the savings function implied by the conditional expectation
function. (c) plots the implied consumption function.

Similarly, the consumption function is approximately linear away from the borrowing constraint,

but curved close to it.

The resulting stationary distribution of households is plotted in Figure 2. The solid lines

plot a nonparametric histogram approximation of the distribution and the dashed lines plot the

approximation using the parametric family (1). Employed households hold on average more wealth

than the unemployed, and in particular have almost no mass at the borrowing constraint. In

contrast, the unemployed have a mass point at the borrowing constraint, which can be seen in the

histogram. The parametric family provides an acceptable fit to the distribution, although less well

than in the main text due to the presence of the borrowing constraint.3 Since so few households

are at the borrowing constraint, I ignore the borrowing constraint, although as discussed in Section

2.1 the method can be extended to incorporate this mass point.

Figure 3 plots the impulse responses of key aggregate variables to an aggregate TFP shock, as

directly output by Dynare using a first-order approximation of the dynamics. Higher aggregate

TFP increases the marginal product of labor, which increases the real wage and therefore labor

income and consumption. Higher TFP also increases the marginal product of capital, which

3Theoretically, with the borrowing constraint the distribution is characterized by a finite (but large) number of
mass points, which I am approximating with one mass point plus a density.

11



Figure 2: Invariant Distribution of Households

(a) Unemployed households (b) Employed households
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Notes: Invariant distribution of households conditional on idiosyncratic shock. "Histogram" refers to approximating
the distribution with a nonparametric histogram, as in Young (2010). "Parametric family" refers to approximating
the distribution with the parametric family introduced in the main text.

increases the real interest rate and therefore the incentive to accumulate capital. The resulting

business cycle statistics are recorded in Table 2. As usual, consumption is less volatile than output,

which is less volatile than investment. All series are highly correlated given that fluctuations are

driven by only aggregate TFP shocks.
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Figure 3: Impulse Responses
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Notes: Impulse responses to an aggregate TFP shock, as visualized by Dynare.

Table 2: Business Cycle Statistics

SD (relative to output) Correlation with Output

Output (1.32%) × ×

Consumption 0.5 Consumption .912

Investment 2.651 Investment .975

Real wage 1 Real wage 1

Real interest rate 0.15 Real interest rate .898

Notes: Standard deviation of aggregate variables. All variables are HP-filtered with smoothing parameter λ = 100
and, with the exception of the real interest rate, have been logged. Standard deviations for variables other than
output are expressed relative to that of output.
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