Micro Data for Macro Models Topic 0: Course Intro and Representative Agent Macroeconomics

Thomas Winberry

January 7th, 2019

1. Ask important questions

- What do you want to understand about the world?
- Why is it important to understand that?
- Why don't we understand it already?

1. Ask important questions

- What do you want to understand about the world?
- Why is it important to understand that?
- Why don't we understand it already?

2. Be able to convincingly answer your question

- Develop the necessary skills
- Ask answerable questions (go from broad to sufficiently narrow)

1. Ask important questions

- What do you want to understand about the world?
- Why is it important to understand that?
- Why don't we understand it already?

2. Be able to convincingly answer your question

- Develop the necessary skills
- Ask answerable questions (go from broad to sufficiently narrow)

- · Informal conversations with people (AEA interviews)
- Presentations (job talks)
- Papers (job market paper)

1. Ask important questions

- What do you want to understand about the world?
- Why is it important to understand that?
- Why don't we understand it already?

2. Be able to convincingly answer your question

- Develop the necessary skills
- Ask answerable questions (go from broad to sufficiently narrow)

- · Informal conversations with people (AEA interviews)
- Presentations (job talks)
- Papers (job market paper)

1. Ask important questions

- What do you want to understand about the world?
- Why is it important to understand that?
- Why don't we understand it already?

2. Be able to convincingly answer your question

- Develop the necessary skills
- Ask answerable questions (go from broad to sufficiently narrow)

- · Informal conversations with people (AEA interviews)
- Presentations (job talks)
- Papers (job market paper)

1. Ask important questions

- What do you want to understand about the world?
- Why is it important to understand that?
- Why don't we understand it already?

2. Be able to convincingly answer your question

- Develop the necessary skills
- Ask answerable questions (go from broad to sufficiently narrow)

- · Informal conversations with people (AEA interviews)
- Presentations (job talks)
- Papers (job market paper)

- Slightly more than half go to academic jobs
 - About one-quarter go to top 40 departments
 - Even less end up getting tenured...
- About one quarter go to government agencies (central banks, World Bank, etc.)
- Another quarter to private sector (primarily consulting)

- The median Ph.D. fom a top 20 department never publishes in a peer-reviewed journal
- The median peer-reviewed paper has less than 15 citations

See https://www.jstor.org/stable/2138379

- The creation of research is a skill just like inverting a matrix, solving a DSGE model, computing a standard error, etc.
 - The more you practice, the better you'll become
 - Read papers of those recently tenured at top schools. **Every one of you could have written those papers.**
- · Impact on the profession comes from good ideas
- But that's something Ph.D. students are not directly taught. Typical skills that are lacking:
 - Identifying interesting research questions
 - Explaining why anyone should care about their reserarch
 - Knowing that technical skills are means, not an end

"Where Do Good Ideas Come From?"

- 1. Reading literature (finding holes, being unsatisfied with consensus, etc.)
- 2. Understand the world around us ("what drives employment?," "how does one measure uncertainty?," "which firms respond to interest rate cuts?," etc.)
- 3. Playing around with data
- 4. Talking with other graduate students

- 1. Reading literature (finding holes, being unsatisfied with consensus, etc.)
- 2. Understand the world around us ("what drives employment?," "how does one measure uncertainty?," "which firms respond to interest rate cuts?," etc.)
- 3. Playing around with data
- 4. Talking with other graduate students

Pick projects you're interested in!

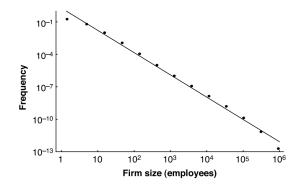
If you're not interested, no one else will be either.

Some Tips From a (Not So) Recent Grad Student

- Treat this like a job (it is one)
 - · Do 30-40 hours of research per week, 48 weeks per year
 - Keep regular hours
- Organize your workflow
 - Write down everything you do (record your progress)
 - Make your work readable and replicable by your future self

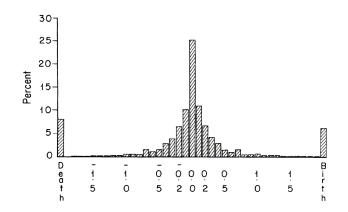
· Talk to faculty!

- Come to every meeting with something written
- Big question \rightarrow your last steps \rightarrow what you did since then \rightarrow your next steps

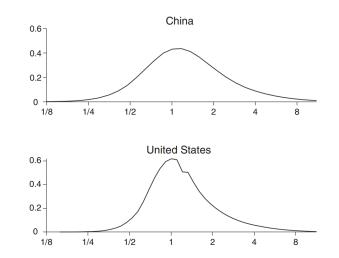

- Treat this like a job (it is one)
 - · Do 30-40 hours of research per week, 48 weeks per year
 - Keep regular hours
- Organize your workflow
 - Write down everything you do (record your progress)
 - Make your work readable and replicable by your future self

· Talk to faculty!

- Come to every meeting with something written
- Big question \rightarrow your last steps \rightarrow what you did since then \rightarrow your next steps
- · Be happy
 - Take one day off per week
- · Don't be mean, aggressive, arrogant, etc.


Our Half of the Course

Firm Size Distribution Has Fat Tails


Source: Axtell (2001)

Huge Amount of Churning Among Firms

Source: Davis and Haltiwanger (1992)

Firms Have Very Different Productivity

Source: Hsieh and Klenow (2009)

Firms Have Very Different Investment Rates

Source: Cooper and Haltiwanger (2006)

How does firm heterogeneity matter for aggregate outcomes?

- · Implicit: relative to representative firm models
- Focus on business cycles

How does firm heterogeneity matter for aggregate outcomes?

- · Implicit: relative to representative firm models
- Focus on business cycles
- Two main answers to this question:
 - 1. Micro data provides information to discipline models
 - 2. Distribution of heterogeneous firms matters for aggregates

How does firm heterogeneity matter for aggregate outcomes?

- · Implicit: relative to representative firm models
- Focus on business cycles
- Two main answers to this question:
 - 1. Micro data provides information to discipline models
 - 2. Distribution of heterogeneous firms matters for aggregates
- Emphasize the interaction between
 - 1. Empirical work: documenting key features of firm behavior
 - 2. Models: draw implications for aggregate dynamics

• Be prepared to discuss required readings in lecture

- Homework designed to introduce two skills:
 - 1. Empirical homework: estimate productivity in Compustat (due January 18th)
 - 2. Model homework: solve simple investment model in Matlab (due February 1st)

- Presentations of existing papers
 - Read my guide to presenting posted on my web site!!!

Representative Agent RBC Model

Preferences

- Representative household with preferences over consumption C_t and labor supply N_t

$$\mathbb{E}\left[\sum_{t=0}^{\infty}\beta^{t}\left(\frac{C_{t}^{1-\gamma}-1}{1-\gamma}-\chi\frac{N_{t}^{1+\frac{1}{\eta}}}{1+\frac{1}{\eta}}\right)\right]$$

Preferences

• Representative household with preferences over consumption C_t and labor supply N_t

$$\mathbb{E}\left[\sum_{t=0}^{\infty}\beta^{t}\left(\frac{C_{t}^{1-\gamma}-1}{1-\gamma}-\chi\frac{N_{t}^{1+\frac{1}{\eta}}}{1+\frac{1}{\eta}}\right)\right]$$

Technology

- Aggregate production function $Y_t = e^{Z_t} K_t^{\alpha} N_t^{1-\alpha}$
- Output used for consumption or investment $C_t + I_t = Y_t$
- Capital accumulation follows $K_{t+1} = (1 \delta)K_t + I_t$
- Aggregate TFP follows $Z_{t+1} = \rho Z_t + \varepsilon_{t+1}$, where $\varepsilon_{t+1} \sim N(0, \sigma^2)$

Preferences

• Representative household with preferences over consumption C_t and labor supply N_t

$$\mathbb{E}\left[\sum_{t=0}^{\infty}\beta^{t}\left(\frac{C_{t}^{1-\gamma}-1}{1-\gamma}-\chi\frac{N_{t}^{1+\frac{1}{\eta}}}{1+\frac{1}{\eta}}\right)\right]$$

Technology

- Aggregate production function $Y_t = e^{Z_t} K_t^{\alpha} N_t^{1-\alpha}$
- Output used for consumption or investment $C_t + I_t = Y_t$
- Capital accumulation follows $K_{t+1} = (1 \delta)K_t + I_t$
- Aggregate TFP follows $Z_{t+1} = \rho Z_t + \varepsilon_{t+1}$, where $\varepsilon_{t+1} \sim N(0, \sigma^2)$

Endowments

- Household endowed with one unit of time each period: $N_t \in [0, 1]$
- Household endowed with K_0 units of capital in t = 0

Equilibrium

Definition: Given K_0 and z_0 , a sequential markets competitive equilibrium is a list of stochastic processes for C_t , K_{t+1} , N_t , w_t , r_t , and Z_t such that

Equilibrium

Definition: Given K_0 and z_0 , a sequential markets competitive equilibrium is a list of stochastic processes for C_t , K_{t+1} , N_t , w_t , r_t , and Z_t such that

1. Household optimization: Taking the processes for w_t and r_t as given, the household solves

$$\max_{C_t, N_t, K_{t+1}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\gamma} - 1}{1-\gamma} - \chi \frac{N_t^{1+\frac{1}{\eta}}}{1+\frac{1}{\eta}}\right)\right]$$

such that $C_t + (K_{t+1} - (1-\delta)K_t) = w_t N_t + r_t K_t$ for all t

1. Household optimization: Taking the processes for w_t and r_t as given, the household solves

$$\max_{C_t, N_t, K_{t+1}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\gamma} - 1}{1-\gamma} - \chi \frac{N_t^{1+\frac{1}{\eta}}}{1+\frac{1}{\eta}}\right)\right]$$

such that $C_t + (K_{t+1} - (1-\delta)K_t) = w_t N_t + r_t K_t$ for all t

2. Firm optimization: Taking the processes for w_t , r_t , and Z_t as given, the firm solves

$$\max_{K_t,N_t} e^{Z_t} K_t^{\alpha} N_t^{1-\alpha} - r_t K_t - w_t N_t$$

such '

Definition: Given K_0 and z_0 , a sequential markets competitive equilibrium is a list of stochastic processes for C_t , K_{t+1} , N_t , w_t , r_t , and Z_t such that

1. Household optimization: Taking the processes for w_t and r_t as given, the household solves

$$\max_{C_t, N_t, K_{t+1}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\gamma} - 1}{1-\gamma} - \chi \frac{N_t^{1+\frac{1}{\eta}}}{1+\frac{1}{\eta}}\right)\right]$$

that $C_t + (K_{t+1} - (1-\delta)K_t) = w_t N_t + r_t K_t$ for all t

2. Firm optimization: Taking the processes for w_t , r_t , and Z_t as given, the firm solves

$$\max_{K_t,N_t} e^{Z_t} K_t^{\alpha} N_t^{1-\alpha} - r_t K_t - w_t N_t$$

3. Market clearing + consistency: For all $t, Z_{t+1} = \rho Z_t + \varepsilon_{t+1}$

1. Household optimization:

$$w_t C_t^{-\gamma} = \chi N_t^{\frac{1}{\eta}}$$

$$C_t^{-\gamma} = \beta \mathbb{E}_t [C_{t+1}^{-\gamma} (1 - \delta + r_{t+1})]$$

1. Household optimization:

$$w_t C_t^{-\gamma} = \chi N_t^{\frac{1}{\eta}}$$

$$C_t^{-\gamma} = \beta \mathbb{E}_t [C_{t+1}^{-\gamma} (1 - \delta + r_{t+1})]$$

2. Firm optimization:

$$r_t = \alpha e^{Z_t} K_t^{\alpha - 1} N_t^{1 - \alpha}$$
$$w_t = (1 - \alpha) e^{Z_t} K_t^{\alpha} N_t^{-\alpha}$$

1. Household optimization:

$$w_t C_t^{-\gamma} = \chi N_t^{\frac{1}{\gamma}}$$

$$C_t^{-\gamma} = \beta \mathbb{E}_t [C_{t+1}^{-\gamma} (1 - \delta + r_{t+1})]$$

2. Firm optimization:

$$r_t = \alpha e^{Z_t} K_t^{\alpha - 1} N_t^{1 - \alpha}$$
$$w_t = (1 - \alpha) e^{Z_t} K_t^{\alpha} N_t^{-\alpha}$$

3. Market clearing + consistency: $C_t + K_{t+1} - (1 - \delta)K_t = e^{Z_t}K_t^{\alpha}N_t^{1-\alpha}$ and $Z_{t+1} = \rho Z_t + \varepsilon_{t+1}$ **Definition**: A non-stochastic steady state sequential markets competitive equilibrium is a list C^* , K^* , N^* , w^* and r^* such that if $\sigma = 0$ and $K_0 = K^*$, then $C_t = C^*$, $K_{t+1} = K^*$, $N_t = N^*$, $w_t = w^*$, and $r_t = r^*$ for all *t* is a sequential markets competitive equilibrium.

Definition: A non-stochastic steady state sequential markets competitive equilibrium is a list C^* , K^* , N^* , w^* and r^* such that if $\sigma = 0$ and $K_0 = K^*$, then $C_t = C^*$, $K_{t+1} = K^*$, $N_t = N^*$, $w_t = w^*$, and $r_t = r^*$ for all *t* is a sequential markets competitive equilibrium.

- 1. Useful in calibrating parameters of the model (steady state $\approx \log r$ run average)
- 2. Useful in solving the model using perturbation methods
 - Approximates solution using Taylor expansion around steady state
 - See my website for Dynare code to solve RBC model (you should know how to do this!)

- 1. Choose some parameters to match steady state aggregates to long-run average in data
 - Choose δ to match $\mathbb{E}[\frac{l_t}{K_t}] = 10\%$ annual
 - Choose α to match $\mathbb{E}[\frac{w_t N_t}{Y_t}] = \frac{2}{3}$
 - Choose β to match $\mathbb{E}[r_t \delta] = 4\%$ annual

- 1. Choose some parameters to match steady state aggregates to long-run average in data
 - Choose δ to match $\mathbb{E}[\frac{l_t}{K_t}] = 10\%$ annual
 - Choose α to match $\mathbb{E}[\frac{w_t N_t}{Y_t}] = \frac{2}{3}$
 - Choose β to match $\mathbb{E}[r_t \delta] = 4\%$ annual
- 2. Choose other parameters to match a priori evidence
 - Choose σ to set EIS = 1
 - Choose η to set Frisch = $\frac{1}{2}$ (more on this next slide)

- 1. Choose some parameters to match steady state aggregates to long-run average in data
 - Choose δ to match $\mathbb{E}[\frac{l_t}{K_t}] = 10\%$ annual
 - Choose α to match $\mathbb{E}[\frac{w_t N_t}{Y_t}] = \frac{2}{3}$
 - Choose β to match $\mathbb{E}[r_t \delta] = 4\%$ annual
- 2. Choose other parameters to match a priori evidence
 - Choose σ to set EIS = 1
 - Choose η to set Frisch = $\frac{1}{2}$ (more on this next slide)
- 3. Estimate process for TFP from measured Solow residuals

$$Z_t = \log(Y_t) - \alpha \log(K_t) - (1 - \alpha) \log(N_t)$$

Indivisible Labor and the Frisch Elasticity

- Calibration of $\eta = \frac{1}{2}$ based on micro-level estimates
- Rogerson (1988) showed that micro-level \neq macro-level

Indivisible Labor and the Frisch Elasticity

- Calibration of $\eta = \frac{1}{2}$ based on micro-level estimates
- Rogerson (1988) showed that micro-level \neq macro-level
 - Households $i \in [0, 1]$ with flow utility $\log(c_{it}) \chi \frac{n_{it}^{1+\xi}}{1+\xi}$, where $\xi = \frac{1}{\eta}$
 - Can only work $n_{it} = 0$ or $n_{it} = 1$ (all extensive margin)

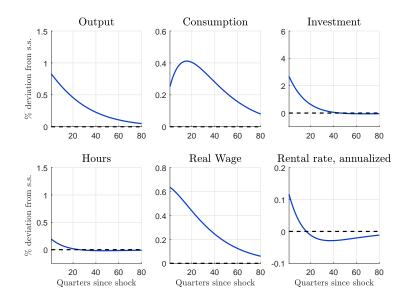
- Calibration of $\eta = \frac{1}{2}$ based on micro-level estimates
- Rogerson (1988) showed that micro-level \neq macro-level
 - Households $i \in [0, 1]$ with flow utility $\log(c_{it}) \chi \frac{n_{it}^{1+\xi}}{1+\xi}$, where $\xi = \frac{1}{\eta}$
 - Can only work $n_{it} = 0$ or $n_{it} = 1$ (all extensive margin)
 - Households choose probability of working p_{it}
 - Ex-ante utility is $log(c_{it}) \chi(p_{it} \times 1 + (1 p_{it}) \times 0)$

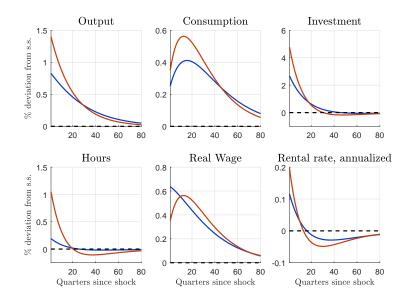
- Calibration of $\eta = \frac{1}{2}$ based on micro-level estimates
- Rogerson (1988) showed that micro-level \neq macro-level
 - Households $i \in [0, 1]$ with flow utility $\log(c_{it}) \chi \frac{n_{it}^{1+\xi}}{1+\xi}$, where $\xi = \frac{1}{\eta}$
 - Can only work $n_{it} = 0$ or $n_{it} = 1$ (all extensive margin)
 - · Households choose probability of working p_{it}
 - Ex-ante utility is $\log(c_{it}) \chi(p_{it} \times 1 + (1 p_{it}) \times 0)$
 - In symmetric equilibrium, $c_{it} = C_t$, $p_{it} = N_t$, and everyone's utility is

$$\log(C_t) - \chi N_t$$

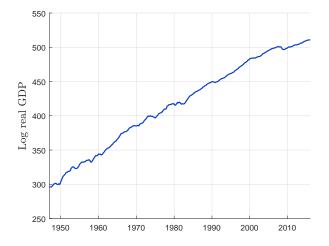
- Calibration of $\eta = \frac{1}{2}$ based on micro-level estimates
- Rogerson (1988) showed that micro-level \neq macro-level
 - Households $i \in [0, 1]$ with flow utility $\log(c_{it}) \chi \frac{n_{it}^{1+\xi}}{1+\xi}$, where $\xi = \frac{1}{\eta}$
 - Can only work $n_{it} = 0$ or $n_{it} = 1$ (all extensive margin)
 - · Households choose probability of working p_{it}
 - Ex-ante utility is $\log(c_{it}) \chi(p_{it} \times 1 + (1 p_{it}) \times 0)$
 - In symmetric equilibrium, $c_{it} = C_t$, $p_{it} = N_t$, and everyone's utility is

$$\log(C_t) - \chi N_t$$

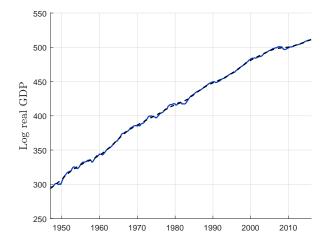

• Even if micro-level $\eta \rightarrow 0$, macro-level $\eta \rightarrow \infty!$

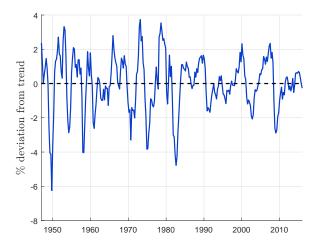

• An **impulse response function** traces out how a one-time shock affects dynamics of the economy

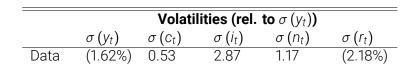
$$\mathbb{E}[Y_{t+s}|\varepsilon_t = \sigma, K_t, z_t] - \mathbb{E}[Y_{t+s}|\varepsilon_t = 0, K_t, z_t]$$

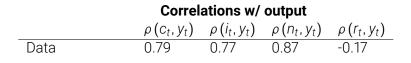

- In principle, depends on K_t , z_t , and size of the shock
- But in linear models, does not

Clear and simple way to understand economic mechanisms in model




Cyclical Fluctuations with Hodrick-Prescott Filter




Cyclical Fluctuations with Hodrick-Prescott Filter

Cyclical Fluctuations with Hodrick-Prescott Filter

	Volatilities (rel. to $\sigma(y_t)$)							
	$\sigma(y_t)$	$\sigma(c_t)$	$\sigma(i_t)$	$\sigma(n_t)$	$\sigma(r_t)$			
Data	(1.62%)	0.53	2.87	1.17	(2.18%)			
Model	(1.08%)	0.35	3.24	0.24	(0.15%)			
Correlations w/ output								
$\rho(C_t, V_t) = \rho(i_t, V_t) = \rho(n_t, V_t) = \rho(r_t, V_t)$								

	Correlations w/ output					
	$\rho(c_t, y_t)$	$\rho(i_t, y_t)$	$\rho(n_t, y_t)$	$\rho(r_t, y_t)$		
Data	0.79	0.77	0.87	-0.17		
Model	0.91	0.99	0.98	0.96		

Volatilities (rel. to $\sigma(y_t)$)								
	$\sigma(y_t)$	$\sigma(c_t)$	$\sigma(i_t)$	$\sigma(n_t)$	$\sigma(r_t)$			
Data	(1.62%)	0.53	2.87	1.17	(2.18%)			
Model	(1.08%)	0.35	3.24	0.24	(0.15%)			
Model	(1.82%)	0.30	3.41	0.75	(0.26%)			
	Correlations w/ output							
		$\rho(c_t, y_t)$	$\rho(i_t, y_t)$	$\rho(n_t, y_t)$	$\rho(r_t, y_t)$			
Data		0.79	0.77	0.87	-0.17			
Model		0.91	0.99	0.98	0.96			
Model		0.87	0.99	0.98	0.96			

Takeaways From Topic 0

- Benchmark representative agent approach to studying aggregate fluctuations
 - Methodology: model specification, equilibrium, calibration, impulse response analysis, business cycle statistics
 - Economic forces: consumption smoothing, labor supply

Takeaways From Topic 0

- Benchmark representative agent approach to studying aggregate fluctuations
 - Methodology: model specification, equilibrium, calibration, impulse response analysis, business cycle statistics
 - Economic forces: consumption smoothing, labor supply
- Micro data cannot be used to calibrate representative agent
 - Representative agent may look very different from micro agents

- Benchmark representative agent approach to studying aggregate fluctuations
 - Methodology: model specification, equilibrium, calibration, impulse response analysis, business cycle statistics
 - Economic forces: consumption smoothing, labor supply
- Micro data cannot be used to calibrate representative agent
 - Representative agent may look very different from micro agents
- Need to build models with explicit micro heterogeneity and aggregation
 - To use micro data, need micro agents
 - Micro data is the ONLY data we have on individual decision making