Micro Data for Macro Models

Topic 2: Capital Investment and Adjustment Costs

Thomas Winberry

January 14th, 2019

Plan for this Topic

1. An unfair summary of the empirical investment literature

2. Accounting for micro-level investment behavior with nonconvex adjustment costs

3. Macro implications of nonconvex adjustment costs

Plan for this Topic

1. An unfair summary of the empirical investment literature

2. Accounting for micro-level investment behavior with nonconvex adjustment costs

3. Macro implications of nonconvex adjustment costs

Empirical Investment Literature

The empirical investment literature is full of disappointments. From time to time waves of new ideas challenge the aggregate investment equation, but these challenges are rarely successful, and progress is, at best, slow. There are serious theoretical obstacles, stemming mostly from the richness of the cross-sectional and time-series scenarios faced by actual investors, from the complexity of the investment technologies available to them, and from the myriad incentive problems that these agents face. There are at least as complex, and perhaps insurmountable, data problems. Both right- and left-hand side variables are seldom measured properly.

Caballero, Engel, and Haltiwanger, "Plant-Level Adjustment and Aggregate Investment Dynamics"

Empirical Investment Literature

- Many early papers focus on neoclassical model
 - "User cost" and "q theory" formulations
 - · Finds model does not fit the data well at micro or macro level

- Two main responses:
 - 1. Real adjustment frictions with nonconvexities
 - 2. Financial frictions to acquiring investment funds are important

Consider individual firm investment problem:

• Firm *i* with production function

$$y_{it} = k_{it}^{\alpha}$$
, $\alpha \leq 1$

- Invest to accumulate capital $k_{it+1} = (1 \delta)k_{it} + i_{it}$
- Quadratic adjustment costs $-\frac{\phi}{2}\left(\frac{i_{it}}{k_{it}}\right)^2 k_{it}$
- Discount future at constant rate r

Consider individual firm investment problem:

• Firm *i* with production function

$$y_{it} = k_{it}^{\alpha}$$
, $\alpha \leq 1$

- Invest to accumulate capital $k_{it+1} = (1 \delta)k_{it} + i_{it}$
- Quadratic adjustment costs $-\frac{\phi}{2} \left(\frac{i_{it}}{k_{it}}\right)^2 k_{it}$
- Discount future at constant rate r

$$v(k_{it}) = \max_{i_{it}, k_{it+1}} k_{it}^{\alpha} - i_{it} - \frac{\phi}{2} \left(\frac{i_{it}}{k_{it}} \right)^{2} k_{it} + \frac{1}{1+r} v(k_{it+1})$$
such that $k_{it+1} = (1-\delta)k_{it} + i_{it}$

4

$$v(k_{it}) = \max_{i_{it}, k_{it+1}} k_{it}^{\alpha} - i_{it} - \frac{\phi}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it} + \frac{1}{1+r} v(k_{it+1})$$
such that $k_{it+1} = (1-\delta)k_{it} + i_{it} \quad (\times q_{it})$

$$v(k_{it}) = \max_{i_{it}, k_{it+1}} k_{it}^{\alpha} - i_{it} - \frac{\phi}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it} + \frac{1}{1+r} v(k_{it+1})$$
such that $k_{it+1} = (1-\delta)k_{it} + i_{it} \quad (\times q_{it})$

Take first order conditions:

$$1 + \phi(\frac{l_{it}}{k_{it}}) = q_{it}$$

$$q_{it} = v'(k_{it+1})$$

$$= \frac{1}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\delta}{1+r}\right)^{s} \left(\alpha k_{it+s+1}^{\alpha-1} + \Phi_{it+s+1}\right)$$

The User Cost Model: $\phi = 0$

With $\phi = 0$, first order conditions simplify to

$$q_{it} = 1$$

$$\alpha k_{it+1}^{\alpha - 1} = r + \delta$$

$$\text{user cos}$$

The User Cost Model: $\phi = 0$

With $\phi = 0$, first order conditions simplify to

$$q_{it} = 1$$

$$\alpha k_{it+1}^{\alpha - 1} = r + \delta$$

$$\text{user cost}$$

- The user cost of capital is the implicit rental rate on capital
- Typically extended to incorporate other empirically relevant features:

$$u_{\mathrm{st}} = \underbrace{p_t}_{\mathrm{relative\ price\ of\ capital}} \times \underbrace{\frac{1 - m_{\mathrm{st}} - z_{\mathrm{st}}}{1 - \tau_t}}_{\mathrm{taxes}} \times (r_t + \delta_{\mathrm{s}})$$

Empirical Performance of the User Cost Model

Typical regression takes the form

$$\frac{i_{it}}{k_{it}} = \alpha_i + \beta u_{it} + \Gamma$$
other variables_{it} $+ \varepsilon_{it}$

- Two main failures of user cost model:
 - 1. Estimated user cost elasticity β small (\approx 0 to -0.5)
 - 2. Coefficients on other variables, especially cash flow, large and significant

 Hall and Jorgensen (1967); Cummins, Hassett, and Hubbard (1994); Chirinko, Fazarri, and Meyer (1999)

The Q-Theory Model: $\phi \geq 0$

$$q_{it} = 1 + \phi(\frac{I_{it}}{k_{it}})$$

$$q_{it} = V'(k_{it+1}) = \frac{1}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\delta}{1+r}\right)^{s} \left(\alpha k_{it+s+1}^{\alpha-1} + \Phi_{it+s+1}\right)$$

The Q-Theory Model: $\phi \geq 0$

$$q_{it} = 1 + \phi(\frac{I_{it}}{k_{it}})$$

$$q_{it} = V'(k_{it+1}) = \frac{1}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\delta}{1+r}\right)^{s} \left(\alpha k_{it+s+1}^{\alpha-1} + \Phi_{it+s+1}\right)$$

- Two key implications of the model:
 - 1. q_{it} is the marginal value of capital to the firm
 - 2. Investment positively related to q_{it} : $\frac{i_{it}}{k_{it}} = \frac{1}{\phi}(q_{it} 1)$

The Q-Theory Model: $\phi \geq 0$

$$q_{it} = 1 + \phi(\frac{I_{it}}{k_{it}})$$

$$q_{it} = V'(k_{it+1}) = \frac{1}{1+r} \sum_{s=0}^{\infty} \left(\frac{1-\delta}{1+r}\right)^{s} \left(\alpha k_{it+s+1}^{\alpha-1} + \Phi_{it+s+1}\right)$$

- Two key implications of the model:
 - 1. q_{it} is the marginal value of capital to the firm
 - 2. Investment positively related to q_{it} : $\frac{i_{it}}{k_{it}} = \frac{1}{\phi}(q_{it} 1)$
- Hayashi (1982): under constant returns, $v'(k_{it}) = \frac{v(k_{it})}{k_{it}}$
 - Marginal q = average q (sometimes called Tobin's q)
 - · Extend to include relative price, taxes, etc.

Empirical Performance of the Q Model

Typical regression takes the form

$$\frac{i_{it}}{k_{it}} = \alpha_i + \beta q_{it} + \Gamma$$
other variables_{it} $+ \varepsilon_{it}$

- · Two main failures of the Q model:
 - 1. Estimated coefficient β small and unstable
 - 2. Coefficients on other variables, especially cash flow, large and significant

Summers (1981); Cummins, Hassett, and Hubbard (1994);
 Erickson and Whited (2000)

Doms and Dunne (1998)

Two responses to failure of neoclassical model:

- 1. Nonconvex adjustment costs are important
- 2. Financial frictions to acquiring investment funds are important

Doms and Dunne (1998)

Two responses to failure of neoclassical model:

- 1. Nonconvex adjustment costs are important
- 2. Financial frictions to acquiring investment funds are important

Doms and Dunne (1998):

- Landmark descriptive study of investment in LRD
- Shows micro-level investment is lumpy, i.e., occurs mainly along extensive margin
 - Fluctuations in total investment mainly due to extensive margin
- Suggests important role for fixed adjustment costs

Measurement

- Use Census data from LRD, 1972 1988
 - After 1988, stopped collecting book value of capital

- Construct capital stock using perpetual inventory method
 - Focus on balanced panel

Analyze the growth rate of capital for plant i at time t

$$GK_{it} = \frac{i_{it} - \delta k_{it-1}}{0.5 \times (k_{it-1} + k_{it})}$$

9

Plant-Level Investment is Lumpy Across Plants

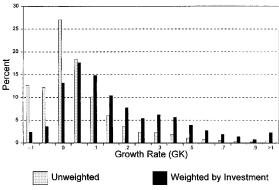


FIG. 1. Capital growth rate (GK) distributions: Unweighted and weighted by investment.

Plant-Level Investment is Lumpy Across Plants

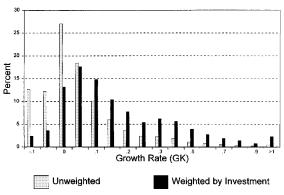
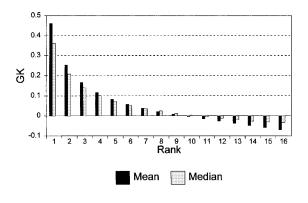


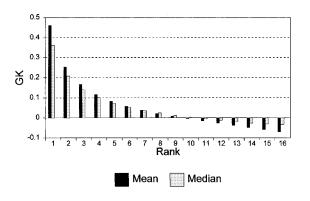
FIG. 1. Capital growth rate (GK) distributions: Unweighted and weighted by investment.

- 51.9% of plants increase capital ≤ 2.5%
- 11% of plants increase capital ≥ 20%

Plant-Level Investment is Lumpy Within Plants

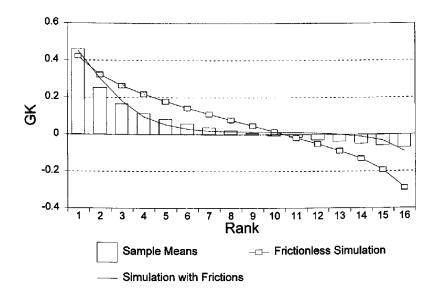


Plant-Level Investment is Lumpy Within Plants

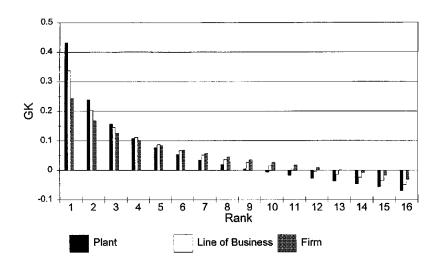


- Capital growth in largest investment episode nearly 50%
- In median investment episode approximately 0%

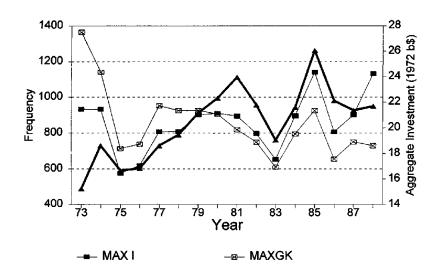
Plant-Level Investment is Lumpy Within Plants



Plant-Level Investment Lumpier than Firm-Level



Frequency of Spikes Correlated with Aggregate Investment



Zwick and Mahon (2016)

Two responses to failure of neoclassical model:

- 1. Nonconvex adjustment costs are important
- 2. Financial frictions to acquiring investment funds are important

Zwick and Mahon (2016)

Two responses to failure of neoclassical model:

- 1. Nonconvex adjustment costs are important
- 2. Financial frictions to acquiring investment funds are important

Zwick and Mahon (2016):

- Clean study exploiting exploiting policy-induced variation in cost of capital
- Shows investment very responsive to cost, especially for small/non-dividend paying firms
- Suggests important role for financial frictions (and potentially fixed costs)

Table 1: Regular and Bonus Depreciation Schedules for Five Year Items

Normal Depreciation								
Year	0	1	2	3	4	5	Total	
Deductions (000s) Tax Benefit ($\tau = 35\%$)	200 70	320 112	192 67.2	115 40.3	115 40.3	58 20.2	1000 350	
Bonus Depreciation (50%)								
Year	0	1	2	3	4	5	Total	
Deductions (000s) Tax Benefit ($\tau = 35\%$)	600 210	160 56	96 33.6	57.5 20.2	57.5 20.2	29 10	1000 350	

Table 1: Regular and Bonus Depreciation Schedules for Five Year Items

Normal Depreciation								
Year	0	1	2	3	4	5	Total	
Deductions (000s) Tax Benefit ($\tau = 35\%$)	200 70	320 112	192 67.2	115 40.3	115 40.3	58 20.2	1000 350	
Bonus Depreciation (50%)								
bonus Depreciation (s	00%0)							
Year Year	0	1	2	3	4	5	Total	

- Bonus shifts depreciation allowances from future to present
- With discounting, lowers the total cost of investment
 Bonus more valuable for longer-lived investment

Table 1: Regular and Bonus Depreciation Schedules for Five Year Items

Normal Depreciation								
Year	0	1	2	3	4	5	Total	
Deductions (000s) Tax Benefit ($\tau = 35\%$)	200 70	320 112	192 67.2	115 40.3	115 40.3	58 20.2	1000 350	
Bonus Depreciation (50%)								
Year	0	1	2	3	4	5	Total	
Deductions (000s)	600	160	96	57.5 20.2	57.5	29 10	1000	

$$z_{s0} = \sum_{t=0}^{T_s} \frac{1}{(1+r)^t} D_t$$

Table 1: Regular and Bonus Depreciation Schedules for Five Year Items

Normal Depreciation								
Year	0	1	2	3	4	5	Total	
Deductions (000s) Tax Benefit ($\tau = 35\%$)	200 70	320 112	192 67.2	115 40.3	115 40.3	58 20.2	1000 350	
Bonus Depreciation (50%)								
Year	0	1	2	3	4	5	Total	
Deductions (000s)	600	160	96	57.5 20.2	57.5	29 10	1000	

$$\begin{split} z_{s0} &= \sum_{t=0}^{T_s} \frac{1}{(1+r)^t} D_t \\ z_{st} &= \theta \times 1 + (1-\theta) \times z_{s0} \end{split}$$

Data

The most complete dataset yet applied to study business investment incentives.

Data

The most complete dataset yet applied to study business investment incentives.

- Representative panel drawn from universe of corporate firms in US
 - Released by Statistics of Income division of IRS
 - Available to researchers through proposal application system
 - Also used by BEA to finalize national income statistics

Data

The most complete dataset yet applied to study business investment incentives.

- Representative panel drawn from universe of corporate firms in US
 - Released by Statistics of Income division of IRS
 - Available to researchers through proposal application system
 - Also used by BEA to finalize national income statistics
- Investment i_{it} measured as expenditures on equipment eligible for Bonus
- PV of depreciation allowances z_{st} constructed at four digit level using r=7%

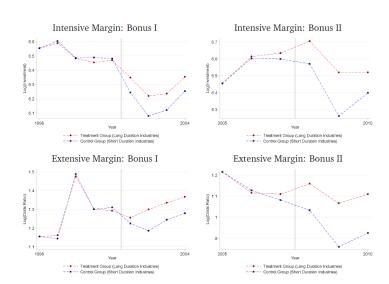
Identification Strategy

- Identify effect of policy using difference-in-differences design
 - · Treatment group: firms in long-lived industries
 - · Control group: firms in short-lived industries
- Regression specification

$$f(i_{it}, k_{it}) = \alpha_i + \delta_t + \beta g(z_{st}) + \gamma X_{it} + \varepsilon_{it}$$

- $f(i_{it}, k_{it})$: $\log i_{it}$, $\log \frac{p_{st}}{1-p_{st}}$, or $\frac{i_{it}}{k_{it}}$
- $g(z_{st})$: z_{st} or $\frac{1-\tau z_{st}}{1-\tau}$
- · Key assumption for difference-in-differences: parallel trends holds

Graphical Evidence

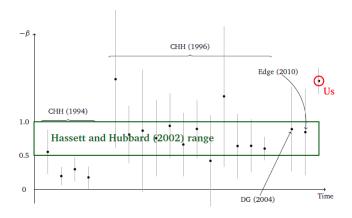


Overall Effect of Bonus on Investment

	Intensive Margin: LHS Variable is log(Investment)								
	(1)	(2)	(3)	(4)	(5)	(6)			
$z_{N,t}$	3.69***	3.78***	3.07***	3.02***	3.73***	4.69***			
	(0.53)	(0.57)	(0.69)	(0.81)	(0.70)	(0.62)			
$CF_{it}/K_{i,t-1}$		0.44***							
		(0.016)							
Observations	735341	580422	514035	221306	585914	722262			
Clusters (Firms)	128001	100883	109678	63699	107985	124962			
R ²	0.71	0.74	0.73	0.80	0.72	0.71			
	Extensive Margin: LHS Variable is log(P(Investment >								
	(1)	(2)	(3)	(4)	(5)	(6)			
z_N ,	3.79**	3.87**	3.12	3.59**	3.99*	4.00***			
	(1.24)	(1.21)	(2.00)	(1.14)	(1.69)	(1.13)			
$CF_{ir}/K_{i,r-1}$		0.029**							
		(0.0100)							
Observations	803659	641173	556011	247648	643913	803659			
Clusters (Industries)	314	314	314	274	277	314			
R ²	0.87	0.88	0.88	0.93	0.90	0.90			
	Tax 7	Term: LHS V	rm: LHS Variable is Investment/Lagged Capital						
	(1)	(2)	(3)	(4)	(5)	(6)			
$\frac{1-t_c z}{1-t_c}$	-1.60***	-1.53***	-2.00***	-1.42***	-2.27***	-1.50***			
1-10	(0.096)	(0.095)	(0.16)	(0.13)	(0.14)	(0.10)			
$CF_{tr}/K_{t,t=1}$		0.043***							
		(0.0023)							
Observations	637243	633598	426214	211029	510653	63129			
Clusters (Firms)	103890	103220	87939	57343	90145	10356			
\mathbb{R}^2	0.43	0.43	0.48	0.54	0.45	0.44			
Controls	No	No	No	No	Yes	No			
Industry Trends	No	No	No	No	No	Yes			

$$f(i_{it}, k_{it}) = \alpha_i + \delta_t + \beta g(z_{st}) + \gamma X_{it} + \varepsilon_{it}$$

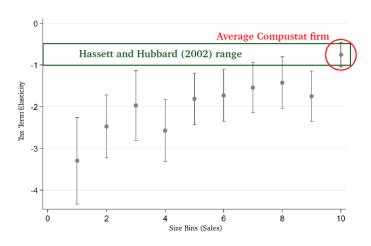
Larger Effect Than Existing Literature



Heterogeneity Suggestive of Financial Frictions

	Sa	Sales		Div Payer?		Lagged Cash	
	Small	Big	No	Yes	Low	High	
$z_{N,t}$	6.29*** (1.21)	3.22*** (0.76)	5.98*** (0.88)	3.67*** (0.97)	7.21*** (1.38)	2.76** (0.88)	
Equality Test	p = .030		p = .079		p = .000		
Observations Clusters (Firms) R ²	177620 29618 0.44	255266 29637 0.76	274809 39195 0.69	127523 12543 0.80	176893 45824 0.81	180933 48936 0.76	

Heterogeneity Explains Larger Estimate than Literature



Unfair Review of Empirical Investment Lit

- Neoclassical model predicts investment very responsive to cost
 - User cost formulation: capital stock responds to implied rental rate
 - Q theory formulation: investment responds to marginal value of capital

Unfair Review of Empirical Investment Lit

- Neoclassical model predicts investment very responsive to cost
 - User cost formulation: capital stock responds to implied rental rate
 - Q theory formulation: investment responds to marginal value of capital
- 1960s 1990s: both formulations largely fail in data
 - Capital/investment unresponsive to cost
 - Other variables (cash flow) significant

Unfair Review of Empirical Investment Lit

- Neoclassical model predicts investment very responsive to cost
 - User cost formulation: capital stock responds to implied rental rate
 - Q theory formulation: investment responds to marginal value of capital
- 1960s 1990s: both formulations largely fail in data
 - Capital/investment unresponsive to cost
 - Other variables (cash flow) significant
- Two responses to failure of neoclassical model
 - 1. Adjustment costs feature nonconvexities
 - 2. Financial frictions influence investment behavior

The Rest of This Topic

Focus on role of nonconvex adjustment costs in explaining micro and macro investment dynamics

The Rest of This Topic

Focus on role of nonconvex adjustment costs in explaining micro and macro investment dynamics

1. Models of micro-level investment behavior

2. Aggregate implications of these models

- Aggregation
- General equilibrium

Plan for this Topic

1. An unfair summary of the empirical investment literature

2. Accounting for micro-level investment behavior with nonconvex adjustment costs

3. Macro implications of nonconvex adjustment costs

- What types of adjustment costs do we need to match micro-level investment behavior?
 - Pays special attention to lumpy nature of investment

- What types of adjustment costs do we need to match micro-level investment behavior?
 - Pays special attention to lumpy nature of investment
- Answer using an estimated structural model
 - Simulated method of moments

- What types of adjustment costs do we need to match micro-level investment behavior?
 - · Pays special attention to lumpy nature of investment
- Answer using an estimated structural model
 - · Simulated method of moments

- A note on terminology in this literature:
 - Partial equilibrium = analyzing decision rules with fixed prices
 - Does NOT mean equilibrium in one market!

- What types of adjustment costs do we need to match micro-level investment behavior?
 - · Pays special attention to lumpy nature of investment
- Answer using an estimated structural model
 - · Simulated method of moments

- A note on terminology in this literature:
 - Partial equilibrium = analyzing decision rules with fixed prices
 - Does NOT mean equilibrium in one market! (which would be correct)

LRD Data

Sample

- Establishment-level observations
- · Balanced panel: model abstracts from entry and exit
- 1972 1988: want to use data on expenditures and retirements

LRD Data

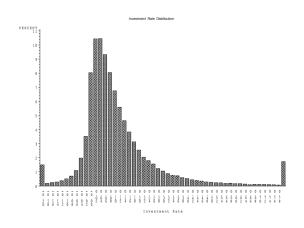
Sample

- Establishment-level observations
- Balanced panel: model abstracts from entry and exit
- 1972 1988: want to use data on expenditures and retirements

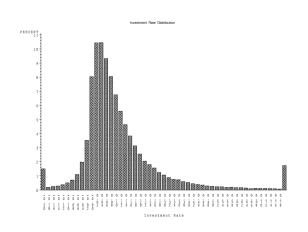
Measurement

- Investment i_{it}: expenditure_{it} retirments_{it}
- Capital k_{it} : $k_{it+1} = (1 \delta_{it})k_{it} + i_{it}$
- Depreciation δ_{it} : constructed to reflect in-use depreciation

Cross-Sectional Distribution of Investment Rates



Cross-Sectional Distribution of Investment Rates



- · Large mass of observations near zero
- Highly skewed and fat right tails

Cross-Sectional Distribution of Investment Rates

Variable	LRD	
Average Investment Rate	12.2% (0.10)	
Inaction Rate: Investment	8.1% (0.08)	
Fraction of Observations with Negative Investment	10.4% (0.09)	
Spike Rate: Positive Investment	18.6% (0.12)	
Spike Rate: Negative Investment	1.8% (0.04)	
Serial correlation of Investment Rates	0.058 (0.003)	
Correlation of Profit Shocks and Investment	0.143 (0.003)	

General Investment Model

Bellman equation

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - p(i_{it}) i_{it} - c(i_{it}, k_{it}, z_{it})$$

$$+ \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, (1-\delta)k_{it} + i_{it})]$$

General Investment Model

Bellman equation

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - p(i_{it}) i_{it} - c(i_{it}, k_{it}, z_{it})$$

$$+ \frac{1}{1+r} \mathbb{E}_{t} [v(z_{it+1}, (1-\delta)k_{it} + i_{it})]$$

Adjustment costs

$$c(i_{it}, k_{it}, z_{it}) = \underbrace{\frac{\gamma}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it}}_{\text{convex}} + \underbrace{\mathbb{1} \left(i_{it} \neq 0\right) \left(Fk_{it} + \lambda e^{z_{it}} k_{it}^{\alpha}\right)}_{\text{nonconvex}}$$

General Investment Model

Bellman equation

$$v(z_{it}, k_{it}) = \max_{i_{jt}} e^{z_{it}} k_{it}^{\alpha} - p(i_{it})i_{it} - c(i_{it}, k_{it}, z_{it})$$

$$+ \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, (1-\delta)k_{it} + i_{it})]$$

Adjustment costs

$$c(i_{it}, k_{it}, z_{it}) = \underbrace{\frac{\gamma}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it}}_{\text{convex}} + \underbrace{\mathbb{1} \left(i_{it} \neq 0\right) \left(Fk_{it} + \lambda e^{z_{it}} k_{it}^{\alpha}\right)}_{\text{nonconvex}}$$

Irreversibilities

$$p(i_{it}) = \underbrace{1 \times 1 (i_{it} \ge 0)}_{\text{buying}} + \underbrace{p_s \times 1 (i_{it} < 0)}_{\text{selling}}$$

No Adjustment Costs

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_t[v(z_{it+1}, (1-\delta)k_{it} + i_{it})]$$

No Adjustment Costs

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_t[v(z_{it+1}, (1-\delta)k_{it} + i_{it})]$$

Optimal Behavior

$$1 = \frac{1}{1+r} \mathbb{E}_t[v_2(z_{it+1}, k_{it+1})]$$

$$\rightarrow \text{user cost model: } r + \delta = \mathbb{E}_t[\alpha k_{it+1}^{\alpha-1}]$$

Convex Costs Only

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} - c(i_{it}, k_{it}, z_{it}) + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$c(i_{it}, k_{it}, z_{it}) = \frac{\gamma}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it}$$

Convex Costs Only

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} - c(i_{it}, k_{it}, z_{it}) + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$c(i_{it}, k_{it}, z_{it}) = \frac{\gamma}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it}$$

Optimal Behavior

$$1 + \gamma \left(\frac{i_{it}}{k_{it}}\right) = \frac{1}{1+r} \mathbb{E}_t[v_2(z_{it+1}, k_{it+1})]$$

$$\rightarrow \text{Q-theory model: } \frac{i_{it}}{k_{it}} = \frac{1}{\gamma} \left(\mathbb{E}_t[v_2(z_{it+1}, k_{it+1})] - 1\right)$$

Nonconvex Costs

$$\begin{aligned} v(z_{it}, k_{it}) &= \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} - c(i_{it}, k_{it}, z_{it}) + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})] \\ c(i_{it}, k_{it}, z_{it}) &= \frac{\gamma}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it} + \mathbb{1} \left(i_{it} \neq 0\right) \left(Fk_{it} + \lambda e^{z_{it}} k_{it}^{\alpha}\right) \end{aligned}$$

Nonconvex Costs

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} - c(i_{it}, k_{it}, z_{it}) + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$c(i_{it}, k_{it}, z_{it}) = \frac{\gamma}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it} + \mathbb{1} (i_{it} \neq 0) (Fk_{it} + \lambda e^{z_{it}} k_{it}^{\alpha})$$

Optimal Behavior

$$v^{a}(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} - c(i_{it}, k_{it}, z_{it}) + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$v^{n}(z_{it}, k_{it}) = e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, (1-\delta)k_{it})]$$

Nonconvex Costs

$$\begin{aligned} v(z_{it}, k_{it}) &= \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} - c(i_{it}, k_{it}, z_{it}) + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})] \\ c(i_{it}, k_{it}, z_{it}) &= \frac{\gamma}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it} + \mathbb{1} \left(i_{it} \neq 0\right) \left(Fk_{it} + \lambda e^{z_{it}} k_{it}^{\alpha}\right) \end{aligned}$$

Optimal Behavior

$$v^{a}(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} - c(i_{it}, k_{it}, z_{it}) + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$v^{n}(z_{it}, k_{it}) = e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, (1-\delta)k_{it})]$$

- \rightarrow Adjust iff $v^a(z_{it}, k_{it}) > v^n(z_{it}, k_{it})$
 - Depreciation
 - · Productivity shock

Irreversibility

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$p(i_{it}) = 1 \times 1 (i_{it} \ge 0) + p_{s} \times 1 (i_{it} < 0)$$

Irreversibility

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$p(i_{it}) = 1 \times \mathbb{1} (i_{it} \ge 0) + p_{s} \times \mathbb{1} (i_{it} < 0)$$

Optimal Behavior

$$v^{b}(z_{it}, k_{it}) = \max_{i_{it}>0} e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$v^{s}(z_{it}, k_{it}) = \max_{i_{it}<0} e^{z_{it}} k_{it}^{\alpha} - p_{s}i_{it} + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$v^{n}(z_{it}, k_{it}) = e^{z_{it}} k_{it}^{\alpha} + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, (1-\delta)k_{it})]$$

Irreversibility

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$p(i_{it}) = 1 \times 1 (i_{it} \ge 0) + p_{s} \times 1 (i_{it} < 0)$$

Optimal Behavior

$$v^{b}(z_{it}, k_{it}) = \max_{i_{it} > 0} e^{z_{it}} k_{it}^{\alpha} - i_{it} + \frac{1}{1+r} \mathbb{E}_{t} [v(z_{it+1}, k_{it+1})]$$

$$v^{s}(z_{it}, k_{it}) = \max_{i_{it} < 0} e^{z_{it}} k_{it}^{\alpha} - p_{s} i_{it} + \frac{1}{1+r} \mathbb{E}_{t} [v(z_{it+1}, k_{it+1})]$$

$$v^{n}(z_{it}, k_{it}) = e^{z_{it}} k_{it}^{\alpha} + \frac{1}{1+r} \mathbb{E}_{t} [v(z_{it+1}, (1-\delta)k_{it})]$$

→ Also generates inaction

Illustration of Various Frictions

Moment		No AC	CON	NC-F	$\text{NC-}\lambda$	TRAN
Fraction of inaction		0.0	0.038	0.616	0.588	0.69
Fraction with positive investment bursts		0.298	0.075	0.212	0.213	0.120
Fraction with negative investment bursts	0.018	0.203	0.0	0.172	0.198	0.024
$corr(i_{it}, i_{it-1})$	0.058	-0.053	0.732	-0.057	-0.06	0.110
$\operatorname{corr}(i_{it}, a_{it})$	0.143	0.202	0.692	0.184	0.196	0.346

Model Quantification

Overall strategy

- 1. Fix a subset of parameters
- 2. Estimate shock process using measured TFP-type approach
- 3. Estimate adjustment costs to match moments

Model Quantification

Overall strategy

- 1. Fix a subset of parameters
- 2. Estimate shock process using measured TFP-type approach
- 3. Estimate adjustment costs to match moments

Fixed parameters

- Depreciation rate $\delta = 6.9\%$
- Discount rate r = 5.25%

Model Quantification

Overall strategy

- 1. Fix a subset of parameters
- 2. Estimate shock process using measured TFP-type approach
- 3. Estimate adjustment costs to match moments

Fixed parameters

- Depreciation rate $\delta = 6.9\%$
- Discount rate r = 5.25%

Estimate idiosyncratic shocks

- Assume $z_{it} = \varepsilon_{it} + b_t$
- Assume AR(1) and use GMM on

$$\log(\pi_{it}) = \rho_{\epsilon} \log(\pi_{it-1}) + \theta k_{it} - \rho_{\epsilon} \theta k_{it-1} + b_t - \rho_{\epsilon} b_{t-1} + \eta_{it}$$

See paper for details

Estimating Adjustment Cost Parameters

- Estimate parameters for two separate cases:
 - 1. Fixed cost case: estimate $\Theta = (\gamma, F, p_s)$, set $\lambda = 1$
 - 2. Opportunity cost case: estimate $\Theta = (\gamma, \lambda, p_s)$, set F = 0

Estimating Adjustment Cost Parameters

- Estimate parameters for two separate cases:
 - 1. Fixed cost case: estimate $\Theta = (\gamma, F, p_s)$, set $\lambda = 1$
 - 2. Opportunity cost case: estimate $\Theta = (\gamma, \lambda, p_s)$, set F = 0
- Simulated Method of Moments (SMM)

$$\boldsymbol{\hat{\Theta}} = \arg\min_{\boldsymbol{\Theta}} \left[\boldsymbol{\Psi}_{\text{d}} - \boldsymbol{\Psi}_{\text{S}}(\boldsymbol{\Theta}) \right]^{\text{T}} \boldsymbol{W} \left[\boldsymbol{\Psi}_{\text{d}} - \boldsymbol{\Psi}_{\text{S}}(\boldsymbol{\Theta}) \right]$$

- \cdot Data moments Ψ_d : drawn from data
- Model moments $\Psi_{\text{S}}(\Theta)\!:$ simulated panel of firms from model
- Weighting matrix W: efficient matrix from GMM
- Standard errors: GMM formulas plus factor for Monte Carlo error

Estimation Results: Fixed Cost Case

Spec.	Structu	ıral Parm.	Est. (s.e.)	moments					
	γ	F	p_s	$corr(i, i_{-1})$	corr(i, a)	$spike^+$	$spike^-$	$\pounds(\hat{\Theta})$	
LRD				0.058	0.143	0.186	0.018		
all	0.049	0.039	0.975	0.086	0.31	0.127	0.030	6399.9	
	(0.002)	(0.001)	(0.004)						
γ only	0.455	0	1	0.605	0.540	0.23	0.028	53182.6	
	(0.002)								
p_s only	0	0	0.795	0.113	0.338	0.132	0.033	7673.68	
			(0.002)						
F only	0	0.0695	1	-0.004	0.213	0.105	0.0325	7390.84	
		(0.00046)							

Estimation Results: Fixed Cost Case

Spec.	Structural Parm. Est. (s.e.)			moments					
	γ	F	p_s	$corr(i, i_{-1})$	corr(i, a)	$spike^+$	$spike^-$	$\pounds(\hat{\Theta})$	
LRD				0.058	0.143	0.186	0.018		
all	0.049	0.039	0.975	0.086	0.31	0.127	0.030	6399.9	
	(0.002)	(0.001)	(0.004)						
γ only	0.455	0	1	0.605	0.540	0.23	0.028	53182.6	
	(0.002)								
p_s only	0	0	0.795	0.113	0.338	0.132	0.033	7673.68	
			(0.002)						
F only	0	0.0695	1	-0.004	0.213	0.105	0.0325	7390.84	
		(0.00046)							

Estimated fixed cost $F \approx 4\%$ of capital stock

Estimation Results: Disruption Cost Case

Spec.	Structural Parm. Est. (s.e.)			moments					
	γ	λ	p_s	$corr(i, i_{-1})$	corr(i, a)	$spike^+$	spike-	$\pounds(\hat{\Theta})$	
LRD				0.058	0.143	0.186	0.018		
λ only	0	0.796	1.0	-0.009	0.06	0.107	0.042	9384.06	
		(0.0040)							
all	0.153	0.796	0.981	0.148	0.156	0.132	0.023	2730.97	
	(0.0056)	(0.0090)	(0.0090)						

Estimation Results: Disruption Cost Case

Spec.	Structural Parm. Est. (s.e.)			moments					
	γ	λ	p_s	$corr(i, i_{-1})$	corr(i, a)	$spike^+$	spike-	$\pounds(\hat{\Theta})$	
LRD				0.058	0.143	0.186	0.018		
λ only	0	0.796	1.0	-0.009	0.06	0.107	0.042	9384.06	
		(0.0040)							
all	0.153	0.796	0.981	0.148	0.156	0.132	0.023	2730.97	
	(0.0056)	(0.0090)	(0.0090)						

Estimated disruption cost 1 $-\lambda \approx$ 20% of profits On average, pay 3.1% of profits in AC when adjust

Cooper and Haltiwanger (2006): Wrapping Up

 What types of adjustment costs do we need to match micro data?

Cooper and Haltiwanger (2006): Wrapping Up

- What types of adjustment costs do we need to match micro data? Non-convexities:
 - Fixed costs
 - Disruption costs
 - Irreversibilities

Cooper and Haltiwanger (2006): Wrapping Up

- What types of adjustment costs do we need to match micro data? Non-convexities:
 - Fixed costs
 - Disruption costs
 - Irreversibilities

- Nice illustration of Simulated Method of Moments (SMM) methodology
 - Specify moments of the data you think are important
 - Select parameters which are well-identified by those moments
 - Choose parameters to get model as close as possible to data

Asker, Collard-Wexler, and De Loecker (2014)

Shows Cooper-Haltiwanger (2006) model also explains much of MRPK $_{it}$ dispersion documented by Hsieh and Klenow (2009)

Asker, Collard-Wexler, and De Loecker (2014)

Shows Cooper-Haltiwanger (2006) model also explains much of MRPK $_{it}$ dispersion documented by Hsieh and Klenow (2009)

Data: LRD, 1972 - 1997

Also use cross-country data for analysis in paper

Model: Cooper-Haltiwanger (2006) opportunity cost model

$$v(z_{it}, k_{it}) = \max_{i_{it}} e^{z_{it}} k_{it}^{\alpha} - i_{it} - c(i_{it}, k_{it}, z_{it}) + \frac{1}{1+r} \mathbb{E}_{t}[v(z_{it+1}, k_{it+1})]$$

$$c(i_{it}, k_{it}, z_{it}) = \frac{\gamma}{2} \left(\frac{i_{it}}{k_{it}}\right)^{2} k_{it} + \mathbb{1} (i_{it} \neq 0) \lambda e^{z_{it}} k_{it}^{\alpha}$$

Estimation

Estimate
$$\Theta = (\gamma, \lambda)$$
 using SMM

$$\hat{\boldsymbol{\Theta}} = \arg\min_{\boldsymbol{\Theta}} \left[\boldsymbol{\Psi}_{\text{d}} - \boldsymbol{\Psi}_{\text{S}}(\boldsymbol{\Theta}) \right]^{\text{T}} W \left[\boldsymbol{\Psi}_{\text{d}} - \boldsymbol{\Psi}_{\text{S}}(\boldsymbol{\Theta}) \right]$$

Estimation

Estimate
$$\Theta = (\gamma, \lambda)$$
 using SMM

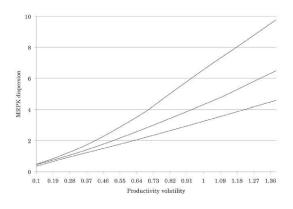
$$\hat{\boldsymbol{\Theta}} = \arg\min_{\boldsymbol{\Theta}} \left[\boldsymbol{\Psi}_{\text{d}} - \boldsymbol{\Psi}_{\text{S}}(\boldsymbol{\Theta}) \right]^{\top} W \left[\boldsymbol{\Psi}_{\text{d}} - \boldsymbol{\Psi}_{\text{S}}(\boldsymbol{\Theta}) \right]$$

Adjustment Cost Estimates and Moments by Country

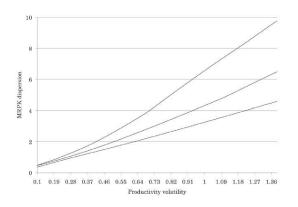
	Adjust Cos		Data Moments on Change in Log Capital				
Country	Convex	Fixed	Less than 5%	More than 20%	Standard Deviation		
United States	8.80	.09	.39	.09	.21		
Chile	4.10	.07	.19	.11	.28		
India	3.46	.12	.29	.19	.30		
France	.21	.00	.13	.57	.57		
Spain	.74	.00	.20	.41	.59		
Mexico	1.15	.22	.08	.73	.66		
Romania	.66	.03	.08	.61	.72		
Slovenia	.35	.00	.15	.52	.76		

Note.—Standard errors were computed using the usual formula for minimum-distance estimators. However, because of the large size of the data sets we employ, the standard errors are of the order of 1×10^{-3} or smaller, and so we do not report them. Adjustment costs for Slovenia are based on a model with production function coefficients set to the mean US coefficients (see the discussion in Sec. V.B).

Higher Idiosyncratic Volatility → Higher MRPK Dispersion



Higher Idiosyncratic Volatility → Higher MRPK Dispersion



- MRPK_{it} = $\alpha \frac{y_{it}}{k_{it}}$
- Time to build \rightarrow ex-post dispersion
- Adjustment costs → ex-ante dispersion

Idiosyncratic Volatility and MRPK Dispersion in Data

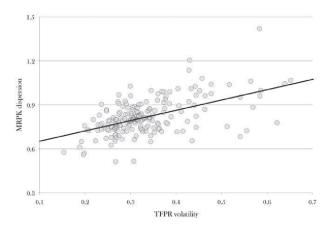


Fig. 2.—Volatility and the dispersion in MRPK: US plant data, 1972–97. The unit of observation is the industry. The line is generated by an OLS regression on 188 industries, in which the estimated slope is 0.73 (0.08) and the constant is 0.57 (0.03), and the $R^2=.3$, where the standard errors are in parentheses.

Idiosyncratic Volatility and MRPK Dispersion in Data

Country	Coefficient	R^2	Industry-Year Observations
United States:			
Plants	.76***	.47	4,037
	(.04)		
Firms	.68***	.44	4,037
	(.07)		
Chile	.54*	.13	55
	(.29)		
France	1.03***	.28	167
	(.33)		
India	.61**	.28	279
	(.17)		
Mexico	.19**	.07	296
	(.07)		
Romania	.44***	.21	126
	(.13)		
Slovenia	.53**	.09	108
	(.21)		
Spain	.56*	.35	181
	(.33)		
All:			
Unweighted	.55***	.67	5,326
	(.15)		
Weighted	.74***	.50	5,326
	(.03)		

Quantitative Amount of Dispersion Explained

	Specification							
Country	(1)	(2)	(3)	(4)	(5)			
United States	.223	.806	.806	.643	.820			
France	.892	.702	.899	.944	.651			
Chile	.994	.983	.987	.963	.785			
India	.984	.941	.964	.976	.596			
Mexico	.879	.813	.883	.908	.634			
Romania	.983	.923	.817	.702	.846			
Slovenia	.967	.774	.967	.984	.683			
Spain	.718	.627	.600	.530	.495			
All (excluding United States)	.879	.777	.820	.800	.640			
All	.674	.786	.816	.748	.696			
Specification details:								
All US adjusted costs	X		X					
Own-country adjusted costs		X						
All 2 × US adjusted costs				X				
1-period time to build only					X			
US average β's	X							
Industry-country β's		X	X	X	X			

Nore.—The unit of observation is the country-industry. Specifications are as follows: (1) All countries have the United States' estimated adjustment costs and production coefficients equal to the US averages across industries; (2) industry-country-specific production coefficients (except for Slovenia; see Sec. III.B), country specific adjustment costs, and industry-country-specific AR(1); (3) same as for 2, but with the United States' estimated adjustment costs for all countries; (4) same as for 3, but with twice the United States' estimated adjustment costs for all countries; and (5) same as for 3, but with zero adjustment costs (other than the one-period time to build) for all countries. In all specifications, the

Plan for this Topic

1. An unfair summary of the empirical investment literature

2. Accounting for micro-level investment behavior with nonconvex adjustment costs

3. Macro implications of nonconvex adjustment costs

Aggregate Implications of Micro Investment Models

- 1. Aggregation of micro-level models holding prices fixed (partial equilibrium)
 - Response of aggregate investment to shocks depends on number of firms who adjust
 - Aggregate investment features time-varying elasticity w.r.t. shocks
 - · Representative firm instead predicts constant elasticity

Aggregate Implications of Micro Investment Models

- 1. Aggregation of micro-level models holding prices fixed (partial equilibrium)
 - Response of aggregate investment to shocks depends on number of firms who adjust
 - Aggregate investment features time-varying elasticity w.r.t. shocks
 - · Representative firm instead predicts constant elasticity
- 2. Endogenize prices in general equilibrium
 - In benchmark RBC framework, procyclical real interest rate eliminates time-varying elasticity
 - Modifications to benchmark model can break this irrelevance result

General Lessons

- 1. Anytime you go from micro to macro, need to think about
 - Aggregation
 - General equilibrium
- 2. Macro models with micro heterogeneity are hard
 - Entire cross-sectional distribution of agents part of state vector
 - Difficult to numerically compute and estimate

General Lessons

- 1. Anytime you go from micro to macro, need to think about
 - Aggregation
 - · General equilibrium
- 2. Macro models with micro heterogeneity are hard
 - Entire cross-sectional distribution of agents part of state vector
 - · Difficult to numerically compute and estimate

- Aggregate implications of lumpy investment models good illustration of these more general issues
 - Each of these steps has been extensively studied

Outline of Next Steps

- 1. Benchmark general equilibrium model with lumpy investment: Khan and Thomas (2008)
 - Aside: how to numerically compute heterogeneous agent models
- 2. Model generates time-varying elasticity in partial equilibrium
- 3. Model generates constant elasticity in general equilibrium
- 4. Two broad responses to irrelevance result in literature
 - Specification of micro-level adjustment costs
 - Specification of general equilibrium

Outline of Next Steps

Benchmark general equilibrium model with lumpy investment: Khan and Thomas (2008)

- Aside: how to numerically compute heterogeneous agent models
- 2. Model generates time-varying elasticity in partial equilibrium
- 3. Model generates constant elasticity in general equilibrium
- 4. Two broad responses to irrelevance result in literature
 - Specification of micro-level adjustment costs
 - Specification of general equilibrium

Model Overview

Heterogeneous Firms

- Fixed mass
- Idiosyncratic + aggregate productivity shocks
- · Fixed capital adjustment costs

Representative Household

- · Owns firms
- Supplies labor
- Complete markets

Heterogeneous Firms

Production technology $y_{jt} = e^{z_t} e^{\varepsilon_{jt}} k_{jt}^{\theta} n_{jt}^{\nu}$, $\theta + \nu < 1$

- Idiosyncratic productivity shock $\varepsilon_{jt+1} = \rho_{\epsilon}\varepsilon_{jt} + \omega_{jt+1}^{\varepsilon}$ where $\omega_{it+1}^{\varepsilon} \sim N(0, \sigma_{\epsilon}^2)$
- Aggregate productivity shock $z_{t+1} = \rho_z z_t + \omega_{t+1}^z$ where $\omega_{t+1}^z \sim N(0, \sigma_z^2)$

Heterogeneous Firms

Production technology $y_{jt} = e^{z_t} e^{\varepsilon_{jt}} k_{it}^{\theta} n_{it}^{\nu}, \theta + \nu < 1$

- Idiosyncratic productivity shock $\varepsilon_{jt+1} = \rho_{\epsilon}\varepsilon_{jt} + \omega_{jt+1}^{\varepsilon}$ where $\omega_{it+1}^{\varepsilon} \sim N(0, \sigma_{\epsilon}^2)$
- Aggregate productivity shock $z_{t+1} = \rho_z z_t + \omega_{t+1}^z$ where $\omega_{t+1}^z \sim N(0, \sigma_z^2)$

Firms accumulate capital according to $k_{jt+1} = (1 - \delta)k_{jt} + i_{jt}$

- If $\frac{i_{j_t}}{k_{j_t}} \notin [-a, a]$, pay fixed cost ξ_{jt} in units of labor
- Fixed cost $\xi_{jt} \sim U[0, \overline{\xi}]$

Firm Optimization Problem: Recursive Formulation

$$v(\varepsilon, k, \xi; \mathbf{s}) = \max_{n} e^{z} e^{\varepsilon} k^{\theta} n^{\nu} - w(\mathbf{s}) n$$
$$+ \max \left\{ v^{A}(\varepsilon, k; \mathbf{s}) - w(\mathbf{s}) \xi, v^{N}(\varepsilon, k; \mathbf{s}) \right\}$$

Firm Optimization Problem: Recursive Formulation

$$v(\varepsilon, k, \xi; \mathbf{s}) = \max_{n} e^{z} e^{\varepsilon} k^{\theta} n^{\nu} - w(\mathbf{s}) n$$

$$+ \max \left\{ v^{A}(\varepsilon, k; \mathbf{s}) - w(\mathbf{s}) \xi, v^{N}(\varepsilon, k; \mathbf{s}) \right\}$$

$$v^{A}(\varepsilon, k; \mathbf{s}) = \max_{i \in \mathbb{R}} -i + \mathbb{E} \left[\Lambda(\mathbf{s}') v(\varepsilon', k', \xi'; \mathbf{s}') | \varepsilon, k; \mathbf{s} \right]$$

$$v^{N}(\varepsilon, k; \mathbf{s}) = \max_{i \in [-ak, ak]} -i + \mathbb{E} \left[\Lambda(\mathbf{s}') v(\varepsilon', k', \xi'; \mathbf{s}') | \varepsilon, k; \mathbf{s} \right]$$

Firm Optimization Problem: Recursive Formulation

$$v(\varepsilon, k, \xi; \mathbf{s}) = \max_{n} e^{z} e^{\varepsilon} k^{\theta} n^{\nu} - w(\mathbf{s}) n$$
$$+ \max \left\{ v^{A}(\varepsilon, k; \mathbf{s}) - w(\mathbf{s}) \xi, v^{N}(\varepsilon, k; \mathbf{s}) \right\}$$

$$\widehat{v}(\varepsilon, k; \mathbf{s}) = \max_{n} e^{z} e^{\varepsilon} k^{\theta} n^{\nu} - w(\mathbf{s}) n$$

$$+ \frac{\widehat{\xi}(\varepsilon, k; \mathbf{s})}{\overline{\xi}} \left(v^{A}(\varepsilon, k; \mathbf{s}) - w(\mathbf{s}) \frac{\widehat{\xi}(\varepsilon, k; \mathbf{s})}{2} \right)$$

$$+ \left(1 - \frac{\widehat{\xi}(\varepsilon, k; \mathbf{s})}{\overline{\xi}} \right) v^{N}(\varepsilon, k; \mathbf{s})$$

Household

Representative household who owns all firms in the economy

$$\max_{C_t, N_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t (\log C_t - aN_t)$$
 such that $C_t = w_t N_t + \Pi_t$

Household

Representative household who owns all firms in the economy

$$\max_{C_t, N_t} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\log C_t - a N_t \right)$$
 such that $C_t = w_t N_t + \Pi_t$

Complete markets implies that $\Lambda_{t,t+1} = \beta \left(\frac{C_{t+1}}{C_t} \right)^{-1}$

- Firms maximize their market value
- Market value given by expected present value of dividends using stochastic discount factor
- With complete markets, SDF is household's intertemporal marginal rate of substitution

Defining Recursive Competitive Equilibrium

What is the aggregate state **s**?

Defining Recursive Competitive Equilibrium

What is the aggregate state **s**?

Aggregate shock z

What is the aggregate state **s**?

- Aggregate shock z
- Firm's individual states: productivity ε and capital k

What is the aggregate state **s**?

- Aggregate shock z
- Firm's individual states: productivity ε and capital k
 - \rightarrow need distribution of firms $g(\varepsilon, k)$

What is the aggregate state **s**?

- Aggregate shock z
- Firm's individual states: productivity ε and capital k
 - \rightarrow need distribution of firms $g(\varepsilon, k)$

What is the law of motion for the s?

What is the aggregate state **s**?

- Aggregate shock z
- Firm's individual states: productivity arepsilon and capital k
 - \rightarrow need distribution of firms $g(\varepsilon, k)$

What is the law of motion for the s?

$$g_{t+1}(\varepsilon', k') = \int \left[\begin{array}{c} 1\{\rho_{\varepsilon}\varepsilon + \sigma_{\varepsilon}\omega'_{\varepsilon} = \varepsilon'\} \\ \times \int 1\{k'_{t}(\varepsilon, k, \xi) = k'\} dG(\xi) \end{array} \right] \\ \times p(\omega'_{\varepsilon}) g_{t}(\varepsilon, k) d\omega'_{\varepsilon} d\varepsilon dk$$

A set of $v(\varepsilon, k; z, g)$, C(z, g), w(z, g), $\Lambda(z'; z, g)$, and g'(z, g) such that

A set of $v(\varepsilon, k; z, g)$, C(z, g), w(z, g), $\Lambda(z'; z, g)$, and g'(z, g) such that

1. **Firm optimization**: Taking $\Lambda(z'; z, g)$ and w(z, g) as given, $v(\varepsilon, k; z, g)$ solves Bellman equation

A set of $v(\varepsilon, k; z, g)$, C(z, g), w(z, g), $\Lambda(z'; z, g)$, and g'(z, g) such that

- 1. **Firm optimization**: Taking $\Lambda(z'; z, g)$ and w(z, g) as given, $v(\varepsilon, k; z, g)$ solves Bellman equation
- 2. Household optimization: $w(z, g)C(z, g)^{-1} = a$

A set of $v(\varepsilon, k; z, g)$, C(z, g), w(z, g), $\Lambda(z'; z, g)$, and g'(z, g) such that

- 1. **Firm optimization**: Taking $\Lambda(z'; z, g)$ and w(z, g) as given, $v(\varepsilon, k; z, g)$ solves Bellman equation
- 2. Household optimization: $w(z, g)C(z, g)^{-1} = a$
- 3. Market clearing + consistency:

$$\Lambda(z';z,g) = \beta \left(\frac{C(z',g'(z,g))}{C(z,g)}\right)^{-1}$$

$$C(z,g) = \int (y(\varepsilon,k,\xi;z,g) - i(\varepsilon,k,\xi;z,g)) dG(\xi)g(\varepsilon,k) d\varepsilon dk$$

$$g'(\varepsilon,k) \text{ satisfies law of motion for distribution}$$

Outline of Next Steps

- 1. Benchmark general equilibrium model with lumpy investment: Khan and Thomas (2008)
 - Aside: how to numerically compute heterogeneous agent models
- 2. Model generates time-varying elasticity in partial equilibrium
- 3. Model generates constant elasticity in general equilibrium
- 4. Two broad responses to irrelevance result in literature
 - Specification of micro-level adjustment costs
 - Specification of general equilibrium

Computing Equilibrium

• Key challenge: aggregate state g is infinite-dimensional

Computing Equilibrium

- Key challenge: aggregate state g is infinite-dimensional
- · Two steps:
 - Compute steady state without aggregate shocks → distribution constant at g*
 - Compute full model with aggregate shocks → distribution varies over time

Computing Equilibrium

- Key challenge: aggregate state g is infinite-dimensional
- · Two steps:
 - Compute steady state without aggregate shocks → distribution constant at g*
 - Compute full model with aggregate shocks → distribution varies over time
- Today will give you an overview to help you read papers
 - My HW2: solve steady state
 - Aggregate dynamics: Khan and Thomas (2008); Winberry (2016); Terry (2016)

A set of $v^*(\varepsilon, k)$, C^* , w^* , and $g^*(\varepsilon, k)$ such that

A set of $v^*(\varepsilon, k)$, C^* , w^* , and $g^*(\varepsilon, k)$ such that

1. **Firm optimization**: Taking w^* as given: $v^*(\varepsilon, k)$ solves Bellman equation

A set of $v^*(\varepsilon, k)$, C^* , w^* , and $g^*(\varepsilon, k)$ such that

- 1. **Firm optimization**: Taking w^* as given: $v^*(\varepsilon, k)$ solves Bellman equation
- 2. **Household optimization**: Taking w^* as given: $w^*(C^*)^{-1} = a$

A set of $v^*(\varepsilon, k)$, C^* , w^* , and $g^*(\varepsilon, k)$ such that

- 1. **Firm optimization**: Taking w^* as given: $v^*(\varepsilon, k)$ solves Bellman equation
- 2. **Household optimization**: Taking w^* as given: $w^*(C^*)^{-1} = a$
- Markets clearing + consistency:

$$C^* = \int (y(\varepsilon, k, \xi) - i(\varepsilon, k, \xi)) dG(\xi) g^*(\varepsilon, k) d\varepsilon dk$$
$$g^*(\varepsilon, k) \text{ satisfies law of motion for distribution given } g^*$$

Start with guess of W^*

Start with guess of W^*

• Solve firm optimization problem $\rightarrow v^*(\varepsilon, k)$

Start with guess of W^*

- Solve firm optimization problem $\rightarrow v^*(\varepsilon, k)$
- Compute stationary distribution $g^*(\varepsilon, k)$
- Compute implied aggregate consumption C*

Start with guess of W^*

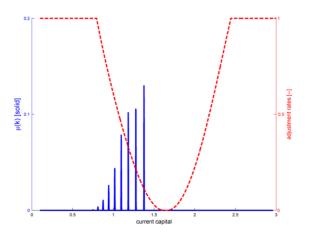
- Solve firm optimization problem $\rightarrow v^*(\varepsilon, k)$
- Compute stationary distribution $g^*(\varepsilon, k)$
- Compute implied aggregate consumption C*
- Check household optimization $w^*(C^*)^{-1} = a$

Start with guess of W^*

- Solve firm optimization problem $\rightarrow v^*(\varepsilon, k)$
- Compute stationary distribution $g^*(\varepsilon, k)$
- Compute implied aggregate consumption C*
- Check household optimization $w^*(C^*)^{-1} = a$

Update guess of w^*

Steady State Outcomes



Distribution in model with no idiosyncratic productivity shocks Investment decision characterized by adjustment hazard

Outside of steady state, three key challenges

- Outside of steady state, three key challenges
 - Distribution g varies over time → how to approximate distribution?
 - 2. Law of motion for g is complicated \rightarrow how to approximate law of motion?
 - 3. Prices are functions of distribution → how to approximate these functions?

- Outside of steady state, three key challenges
 - Distribution g varies over time → how to approximate distribution?
 - 2. Law of motion for g is complicated \rightarrow how to approximate law of motion?
 - 3. Prices are functions of distribution → how to approximate these functions?
- Will briefly describe two approaches to dealing with these challenges
 - 1. Krusell and Smith (1998): approximate distribution with moments
 - 2. Winberry (2016): approximate distribution with flexible parametric family

- · Outside of steady state, three key challenges
 - 1. Distribution g varies over time \rightarrow how to approximate distribution?
 - 2. Law of motion for g is complicated \rightarrow how to approximate law of motion?
 - 3. Prices are functions of distribution \rightarrow how to approximate these functions?
- Will briefly describe two approaches to dealing with these challenges
 - 1. Krusell and Smith (1998): approximate distribution with moments
 - 2. Winberry (2016): approximate distribution with flexible parametric family
- If curious: continuous time makes this easier (Ahn, Kaplan, Moll,

• Approximate distribution with moments, e.g., $g(\varepsilon, k) \approx \overline{K}$

- Approximate distribution with moments, e.g., $g(\varepsilon, k) \approx \overline{K}$
 - Law of motion: $\log \overline{K}' = \alpha_0 + \alpha_1 z + \alpha_2 \log \overline{K}$

- Approximate distribution with moments, e.g., $g(\varepsilon, k) \approx \overline{K}$
 - Law of motion: $\log \overline{K}' = \alpha_0 + \alpha_1 z + \alpha_2 \log \overline{K}$
 - Pricing functions: $\log C = \gamma_0 + \gamma_1 z + \gamma_2 \log \overline{K}$

- Approximate distribution with moments, e.g., $g(\varepsilon,k) \approx \overline{K}$
 - Law of motion: $\log \overline{K}' = \alpha_0 + \alpha_1 z + \alpha_2 \log \overline{K}$
 - Pricing functions: $\log C = \gamma_0 + \gamma_1 z + \gamma_2 \log \overline{K}$
- · Given guess lpha and γ
 - Compute individual decisions $v(\varepsilon, k; z, \overline{K})$
 - Simulate decision rules $\rightarrow \{\overline{K}_t, C_t, z_t\}$
- · Update lpha and γ using OLS

- Approximate distribution with moments, e.g., $g(\varepsilon, k) \approx \overline{K}$
 - Law of motion: $\log \overline{K}' = \alpha_0 + \alpha_1 z + \alpha_2 \log \overline{K}$
 - Pricing functions: $\log C = \gamma_0 + \gamma_1 z + \gamma_2 \log \overline{K}$
- · Given guess lpha and γ
 - Compute individual decisions $v(\varepsilon, k; z, \overline{K})$
 - Simulate decision rules $\rightarrow \{\overline{K}_t, C_t, z_t\}$
- · Update lpha and γ using OLS
- R² on regressions typical accuracy measure
 - Only \overline{K} matters \rightarrow distribution not important ("approximate aggregation")
 - Problems with this measure: Den Haan (2010)

Approximate distribution with parametric family:

$$\begin{split} g\left(\varepsilon,k\right) &\cong g_0 \exp\{g_1^1\left(\varepsilon-m_1^1\right)+g_1^2\left(k-m_1^2\right)+\\ &\sum_{i=2}^{n_g} \sum_{j=0}^i g_i^j \left[\left(\varepsilon-m_1^1\right)^{i-j} \left(k-m_1^2\right)^j-m_i^j\right]\} \end{split}$$

ightarrow Aggregate state approximated by $(z, g(\varepsilon, k)) \approx (z, \mathbf{m})$

Approximate distribution with parametric family:

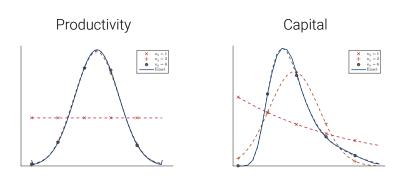
$$g(\varepsilon, k) \cong g_0 \exp\{g_1^1 \left(\varepsilon - m_1^1\right) + g_1^2 \left(k - m_1^2\right) + \sum_{i=2}^{n_g} \sum_{j=0}^i g_i^j \left[\left(\varepsilon - m_1^1\right)^{i-j} \left(k - m_1^2\right)^j - m_i^j \right] \}$$

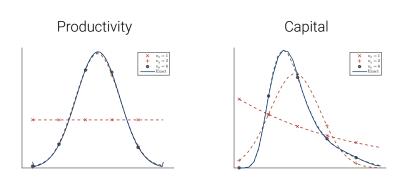
- \rightarrow Aggregate state approximated by $(z, g(\varepsilon, k)) \approx (z, \mathbf{m})$
- Compute law of motion + prices directly by integration

Approximate distribution with parametric family:

$$g(\varepsilon, k) \cong g_0 \exp\{g_1^1 \left(\varepsilon - m_1^1\right) + g_1^2 \left(k - m_1^2\right) + \sum_{i=2}^{n_g} \sum_{j=0}^{i} g_i^j \left[\left(\varepsilon - m_1^1\right)^{i-j} \left(k - m_1^2\right)^j - m_i^j \right] \}$$

- \rightarrow Aggregate state approximated by $(z, g(\varepsilon, k)) \approx (z, \mathbf{m})$
- Compute law of motion + prices directly by integration
- Compute aggregate dynamics using perturbation methods
 - · Solve for steady state in Matlab
 - Solve for aggregate dynamics using Dynare





- Run time \approx 20 40 seconds for accurate approximation
- Fast enough for likelihood-based estimation
- Codes at my website

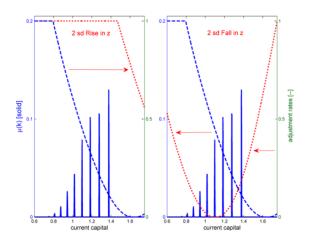
Outline of Next Steps

- 1. Benchmark general equilibrium model with lumpy investment: Khan and Thomas (2008)
 - Aside: how to numerically compute heterogeneous agent models
- 2. Model generates time-varying elasticity in partial equilibrium
- 3. Model generates constant elasticity in general equilibrium
- 4. Two broad responses to irrelevance result in literature
 - Specification of micro-level adjustment costs
 - Specification of general equilibrium

Khan and Thomas (2008) Calibration

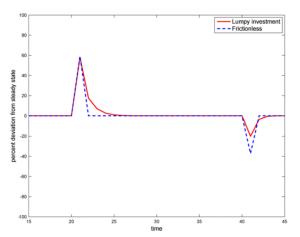
Parameter	Description	Value
Households		
β	Discount factor	.961
ψ	Labor disutility	$N^* = \frac{1}{3}$
Firms		· ·
ν	Labor share	.64
θ	Capital share	.256
δ	Capital depreciation	.085
$\overline{\xi}$	Fixed cost	.0083
а	No fixed cost region	.011
$ ho_arepsilon$	Idiosyncratic TFP AR(1)	.859
$\sigma_{arepsilon}$	Idiosyncratic TFP AR(1)	.022
Aggregate s	hock	
$ ho_{\scriptscriptstyle \mathcal{Z}}$	Aggregate TFP AR(1)	.859
$\sigma_{\scriptscriptstyle Z}$	Aggregate TFP AR(1)	.014

Complicated Impulse Responses



Response of aggregate investment to shock depends on interaction of initial distribution and adjustment hazards

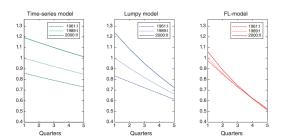
Implication: Sign Dependence



Aggregate investment more responsive to positive than negative shocks

Note true in frictionless model

Implication: State Dependence



From Bachmann, Caballero, and Engel (2013)

$$\frac{I_t}{K_t} = \sum_{j=1}^{p} \phi_j \frac{I_{t-j}}{K_{t-j}} + \sigma_t e_t$$
$$\sigma_t = \alpha_1 + \eta_1 \frac{1}{p} \sum_{j=1}^{p} \frac{I_{t-j}}{K_{t-j}}$$

- · Both of these are examples of nonlinear aggregate dynamics
 - Linear model has constant loading on aggregate shock

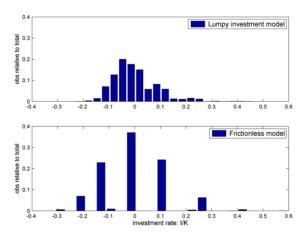
- Both of these are examples of nonlinear aggregate dynamics
 - · Linear model has constant loading on aggregate shock
- Some evidence in aggregate data
 - Sign and state dependence \rightarrow distribution of $\frac{I_t}{K_t}$ positively skewed
 - State dependence \rightarrow dynamics of $\frac{I_t}{K_t}$ feature conditional heteroskedasticity

- Both of these are examples of nonlinear aggregate dynamics
 - · Linear model has constant loading on aggregate shock
- Some evidence in aggregate data
 - Sign and state dependence \rightarrow distribution of $\frac{I_t}{K_t}$ positively skewed
 - State dependence → dynamics of ^{It}/_{Kt} feature conditional heteroskedasticity
- My view: time series evidence is suggestive at best
 - · Predictions are about extreme states, which are rare
 - But that is exactly when we care about these predictions!
 rely on cross-sectional data + carefully specified general equilibrium model

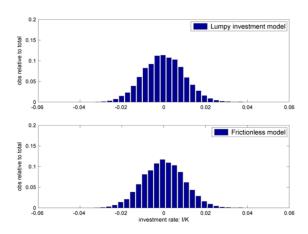
Outline of Next Steps

- 1. Benchmark general equilibrium model with lumpy investment: Khan and Thomas (2008)
 - Aside: how to numerically compute heterogeneous agent models
- 2. Model generates time-varying elasticity in partial equilibrium
- 3. Model generates constant elasticity in general equilibrium
- 4. Two broad responses to irrelevance result in literature
 - Specification of micro-level adjustment costs
 - Specification of general equilibrium
- 5. If time, discuss policy implications

Distribution of Aggregate $\frac{I_t}{K_t}$ in Partial Equilibrium



Distribution of Aggregate $\frac{l_t}{K_t}$ in General Equilibrium



Distribution of Aggregate $\frac{l_t}{K_t}$ in General Equilibrium

TABLE III
ROLE OF NONCONVEXITIES IN AGGREGATE INVESTMENT RATE DYNAMICS

	Persistence	Standard Deviation	Skewness	Excess Kurtosis
Postwar U.S. data ^a	0.695	0.008	0.008	-0.715
A. Partial equilibrium models PE frictionless PE lumpy investment	-0.069 0.210	0.128 0.085	0.358 1.121	0.140 2.313
B. General equilibrium models GE frictionless GE lumpy investment	0.659 0.662	0.010 0.010	0.048 0.067	0.048 -0.074

^aData are annual private investment-to-capital ratio, 1954-2005, computed using Bureau of Economic Analysis tables.

Business Cycles Nearly Identical to Representative Firm

TABLE IV
AGGREGATE BUSINESS CYCLE MOMENTS

	Output	TFP ^a	Hours	Consump.	Invest.	Capital
A. Standard deviatio	ns relative to	output ^b				
GE frictionless	(2.277)	0.602	0.645	0.429	3.562	0.494
GE lumpy	(2.264)	0.605	0.639	0.433	3.539	0.492
B. Contemporaneous	s correlations	with output				
GE frictionless		1.000	0.955	0.895	0.976	0.034
GE lumpy		1.000	0.956	0.900	0.976	0.034

^aTotal factor productivity.

^bThe logarithm of each series is Hodrick–Prescott-filtered using a weight of 100. The output column of panel A reports percent standard deviations of output in parentheses.

Why Do the Nonlinearities Disappear?

General equilibrium price movements

- Time-varying elasticity comes from large movements in adjustment hazard
- Procyclical real interest rate and wage restrain those movements

$$1 + r_t = \frac{1}{\mathbb{E}[\Lambda_{t,t+1}]}$$

Why Do the Nonlinearities Disappear?

General equilibrium price movements

- Time-varying elasticity comes from large movements in adjustment hazard
- Procyclical real interest rate and wage restrain those movements

$$1+r_t=\frac{1}{\mathbb{E}[\Lambda_{t,t+1}]}$$

Specification of adjustment costs

Calibrated adjustment costs small

Outline of Next Steps

- 1. Benchmark general equilibrium model with lumpy investment: Khan and Thomas (2008)
 - Aside: how to numerically compute heterogeneous agent models
- 2. Model generates time-varying elasticity in partial equilibrium
- 3. Model generates constant elasticity in general equilibrium
- 4. Two broad responses to irrelevance result in literature
 - Specification of micro-level adjustment costs
 - Specification of general equilibrium

Outline of Next Steps

- 1. Benchmark general equilibrium model with lumpy investment: Khan and Thomas (2008)
 - Aside: how to numerically compute heterogeneous agent models
- 2. Model generates time-varying elasticity in partial equilibrium
- 3. Model generates constant elasticity in general equilibrium
- 4. Two broad responses to irrelevance result in literature
 - Specification of micro-level adjustment costs: Bachmann, Caballero, Engel (2013), Gourio and Kashyap (2007)
 - Specification of general equilibrium

Bachmann, Caballero, and Engel (2013)

- Argue Khan and Thomas' calibration of adjustment costs responsible for irrelevance result
- Calibrate larger adjustment costs and recover aggregate nonlinearities

Bachmann, Caballero, and Engel (2013)

- Argue Khan and Thomas' calibration of adjustment costs responsible for irrelevance result
- Calibrate larger adjustment costs and recover aggregate nonlinearities
- Argument based on decomposition between AC smoothing and PR smoothing
 - Frictionless partial equilibrium model excessively volatile
 - AC smoothing: dampening due to adjustment costs
 - PR smoothing: dampening due to price movements
- Measure AC smoothing in data and target in calibration → higher adjustment costs

Model

Production technology $y_{jt} = e^{z_t} e^{\varepsilon_{st}} e^{\varepsilon_{jt}} k_{jt}^{\theta} n_{jt}^{\nu}, \theta + \nu < 1$

- Idiosyncratic productivity shock $\varepsilon_{jt+1} = \rho_{\epsilon}\varepsilon_{jt} + \omega_{jt+1}^{\varepsilon}$ where $\omega_{jt+1}^{\varepsilon} \sim N(0, \sigma_{\epsilon}^2)$
- Aggregate productivity shock $z_{t+1} = \rho_z z_t + \omega_{t+1}^z$ where $\omega_{t+1}^z \sim N(0, \sigma_z^2)$
- Sectoral productivity shock $\varepsilon_{st+1} = \rho_{\epsilon}\varepsilon_{st} + \omega_{st+1}^{\varepsilon}$ where $\omega_{st+1}^{\varepsilon} \sim N(0, \sigma_{\epsilon_s}^2)$

Model

Production technology $y_{jt} = e^{z_t} e^{\varepsilon_{st}} e^{\varepsilon_{jt}} k_{jt}^{\theta} n_{jt}^{\nu}, \theta + \nu < 1$

- Idiosyncratic productivity shock $\varepsilon_{jt+1} = \rho_{\epsilon}\varepsilon_{jt} + \omega_{jt+1}^{\varepsilon}$ where $\omega_{it+1}^{\varepsilon} \sim N(0, \sigma_{\epsilon}^2)$
- Aggregate productivity shock $z_{t+1} = \rho_z z_t + \omega_{t+1}^z$ where $\omega_{t+1}^z \sim N(0, \sigma_z^2)$
- Sectoral productivity shock $\varepsilon_{st+1} = \rho_{\epsilon}\varepsilon_{st} + \omega_{st+1}^{\varepsilon}$ where $\omega_{st+1}^{\varepsilon} \sim N(0, \sigma_{\epsilon_s}^2)$

Firms accumulate capital according to $k_{jt+1} = (1 - \delta)k_{jt} + i_{jt}$

- If don't pay fixed cost, must undertake maintenance investment $\chi \times \delta k_{jt}$
- Otherwise, pay fixed cost ξ_{jt} in units of labor
- Fixed cost $\xi_{it} \sim U[0, \overline{\xi}]$

Set most parameters exogenously

Choose σ_Z , $\overline{\xi}$, and χ to match degree of AC-smoothing

- Identify AC-smoothing using volatility of sectoral investment rates
 - Aggregated enough to capture interaction of distribution and hazards
 - Small enough to not generate price response

Set most parameters exogenously

Choose σ_Z , $\overline{\xi}$, and χ to match degree of AC-smoothing

- Identify AC-smoothing using volatility of sectoral investment rates
 - Aggregated enough to capture interaction of distribution and hazards
 - · Small enough to not generate price response
- Targets:
 - 1. Volatility of aggregate investment rate
 - 2. Average volatility of sectoral investment rates
 - 3. Amount of conditional heteroskedasticity

AC vs. PR Smoothing Decomposition

TABLE 6—SMOOTHING DECOMPOSITION

	AC smoothing/total smoothing (in percent)			
Model	LB	UB	Average	
Khan-Thomas-lumpy annual	0.0	16.1	8.0	
Khan-Thomas-lumpy annual, our $\overline{\xi}$	8.1	59.2	33.7	
Our model annual $(\chi = 0)$, Khan and Thomas' $\overline{\xi}$	0.8	16.0	8.4	
Our model annual $(\chi = 0)$	18.9	75.3	47.0	
Our model annual ($\chi = 0.25$)	19.1	75.7	47.4	
Our model annual ($\chi = 0.50$)	19.9	76.6	48.3	
Our model quarterly $(\chi = 0)$	14.5	80.9	47.7	
Our model quarterly ($\chi = 0.25$)	15.4	80.9	48.2	
Our model quarterly $(\chi = 0.5)$	15.4	81.0	48.2	

 $UB = \log \left[\sigma(\text{none}) / \sigma(\text{AC}) \right] / \log \left[\sigma(\text{none}) / \sigma(\text{both}) \right]$ $LB = 1 - \log \left[\sigma(\text{none}) / \sigma(\text{PR}) \right] / \log \left[\sigma(\text{none}) / \sigma(\text{both}) \right]$

Calibrated Adjustment Costs

TABLE 4—THE ECONOMIC MAGNITUDE OF ADJUSTMENT COSTS—ANNUAL

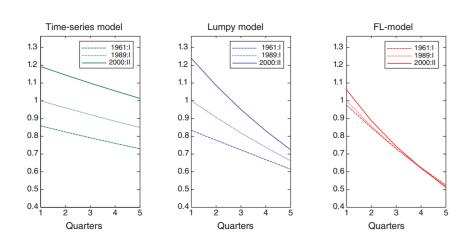
	Adjustment costs/ unit's output (in percent)	Adjustment costs/ unit's wage bill (in percent)
Model	(1)	(2)
This paper ($\chi = 0$)	38.9	60.9
This paper ($\chi = 0.25$)	12.7	19.8
This paper ($\chi = 0.50$)	3.6	5.6
Caballero-Engel (1999)	16.5	_
Cooper-Haltiwanger (2006)	22.9	_
Bloom (2009)	35.4	_
Khan-Thomas (2008)	0.5	0.8
Khan-Thomas (2008) "Huge Adj. Costs"	3.7	5.8

Notes: This table displays the average adjustment costs paid, conditional on adjustment, as a fraction of output (left column) and as a fraction of the wage bill (right column), for various models. Rows 4–6 are based on table IV in Bloom (2009). For Cooper and Haltiwanger (2006) and Bloom (2009) we report the sum of costs associated with two sources of lumpy adjustment: fixed adjustment costs and partial irreversibility. The remaining models only have fixed adjustment costs.

TABLE 5—HETEROSCEDASTICITY RANGE

Model	$\log\left(\sigma_{95}/\sigma_{5}\right)$
Data	0.3021
This paper $(\chi = 0)$	0.1830
This paper ($\chi = 0.25$)	0.2173
This paper ($\chi = 0.50$)	0.2901
Quadratic adj. costs ($\chi = 0$)	0.0487
Quadratic adj. costs ($\chi = 0.25$)	0.0411
Quadratic adj. costs ($\chi = 0.50$)	0.0321
Frictionless	0.0539
Khan-Thomas (2008)	0.0468

Notes: This table displays heteroscedasticity range $(\log(\sigma_{95}/\sigma_5))$ for the data (row 1) and various model specifications that vary in terms of the maintenance parameter χ and the adjustment technology for capital: fixed adjustment costs (rows 2–4), quadratic adjustment costs (rows 5–7), a frictionless model, and the Khan-Thomas (2008) model. The adjustment costs for the models in rows 2–7 have been calibrated to match aggregate and sectoral investment rate volatilities.



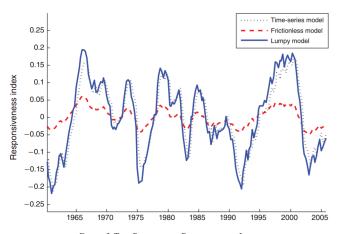


FIGURE 3. TIME PATHS OF THE RESPONSIVENESS INDEX

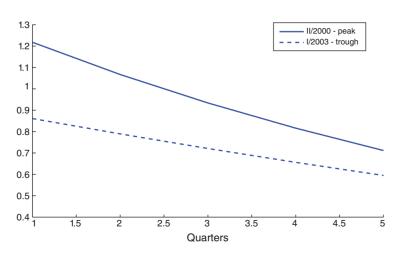


Figure 7. Impulse Responses of the Aggregate Investment Rate in the 2000 Boom-Bust Cycle

Outline of Next Steps

- 1. Benchmark general equilibrium model with lumpy investment: Khan and Thomas (2008)
 - Aside: how to numerically compute heterogeneous agent models
- 2. Model generates time-varying elasticity in partial equilibrium
- 3. Model generates constant elasticity in general equilibrium
- 4. Two broad responses to irrelevance result in literature
 - Specification of micro-level adjustment costs
 - Specification of general equilibrium: Winberry (2018), Bachmann and Ma (2016), Cooper and Willis (2014)

Winberry (2018)

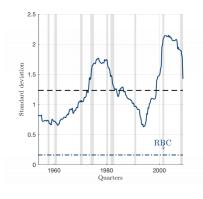
- Argues that procyclical interest rate in Khan and Thomas' model inconsistent with data
 - Cooper and Willis (2014): feed in from data
 - · Winberry (2018): general equilibrium model
- When consistent with data recover aggregate nonlinearities

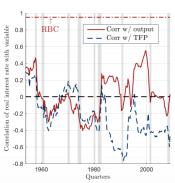
Winberry (2018)

- Argues that procyclical interest rate in Khan and Thomas' model inconsistent with data
 - · Cooper and Willis (2014): feed in from data
 - · Winberry (2018): general equilibrium model
- When consistent with data recover aggregate nonlinearities

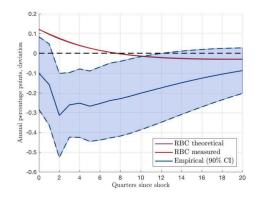
	$\sigma(r_t)$	$\boldsymbol{\rho}(r_t, y_{t-1})$	$\rho(r_t, y_t)$	$\boldsymbol{\rho}(r_t, y_{t+1})$
T-bill	2.18%	-0.08	-0.17	-0.251
AAA	2.34%	-0.29	-0.37	-0.40
BAA	2.43%	-0.32	-0.41	-0.45
Stock	24.7%	-0.24	-0.14	0.02
RBC	0.16%	0.61	0.97	0.74

Rolling Windows of r_t Dynamics





IRF of r_t to TFP Shock



Model

Firms as in Khan and Thomas except:

- Corporate tax code
- Temporary investment stimulus policy
- Quadratic adjustment costs

Model

Firms as in Khan and Thomas except:

- · Corporate tax code
- Temporary investment stimulus policy
- Quadratic adjustment costs

Household preferences feature habit formation:

$$\begin{aligned} \max_{C_t, N_t} & \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \log \left(C_t - H_t - \chi \frac{N_t^{1+\eta}}{1+\eta} \right) \\ S_t &= \frac{C_t - H_t}{C_t} \text{ and } \log S_t = (1-\rho_{\mathbb{S}}) \log \overline{S} + \rho_{\mathbb{S}} \log S_{t-1} + \lambda \log \frac{C_t}{C_{t-1}} \end{aligned}$$

Set most parameters exogeneously

Set most parameters exogeneously

Choose parameters governing micro heterogeneity and habit formation to match micro investment data and real interest rate dynamics

- Real interest rate dynamics pin down capital supply and demand curves
 - Capital supply: households smoothing consumption \rightarrow habit formation
 - Capital demand: firms demanding future capital → shocks and adjustment costs
- Micro investment data pins down shocks and adjustment costs

TABLE 3
EMPIRICAL TARGETS

Micro Investment		
Target	Data	\mathbf{Model}
Average investment rate (%)	10.4%	10.7%
Standard deviation of investment rates	0.16	0.15
Spike rate (%)	14.4%	19.0%
Positive investment rates (%)	85.6%	81.0%
Interest Rate Dynamics		
Target	Data	Model
Cumulative impulse response	-0.49	-0.31
$\sigma(I_t)/\sigma(Y_t)$	2.87	2.88

FIGURE 3: Identification of Habit Formation and Adjustment Costs



Table 4
Fitted Parameter Values

Micro Heterogeneity						
Parameter	Description	Value				
ξ	Upper bound on fixed costs	0.53				
arphi	Convex adjustment cost	2.34				
$ ho_arepsilon$	Idiosyncratic productivity AR(1) (fixed)	0.90				
$\sigma_arepsilon$	Idiosyncratic productivity AR(1)	0.056				
Habit Forma	tion					
Parameter	Description	Value				
λ	Sensitivity of habit w.r.t. consumption bundle	0.73				

State Dependence of TFP Shocks

 ${\bf TABLE~6}$ Fluctuations in Responsiveness index Over Time

	95-5 ra	tio 90-10 rat	io 75-25 rati	o $\rho(RI_t, \log Y_t)$	$\rho(RI_t, \mathrm{adj}_t)$	
Benchmark Calibration (PE interest elasticity $d \log I_t/dr_t = -7.55$)						
Partial Equilibrium	64%	50%	25%	0.93	0.93	
General Equilibrium	31%	23%	15%	0.99	0.78	
Khan and Thomas	(2008)	Calibration	(PE interest e	elasticity $d \log I_t$	$dr_t = -1055.41$	
Partial Equilibrium	49%	38%	18%	0.92	0.94	
General Equilibrium	7%	5%	3%	0.98	0.93	

$$RI_{t} = 100 \times \log \left(\frac{I(z_{t} + \sigma_{z}, X_{t}, \mu_{t}) - I(z_{t}, X_{t}, \mu_{t})}{I(\sigma_{z}, X^{*}, \mu^{*}) - I(0, X^{*}, \mu^{*})} \right)$$

State Dependence of Stimulus Policy

TABLE 8
RESPONSIVENESS INDEX FOR INVESTMENT STIMULUS SHOCK

	95-5 ratio	90-10 ratio	75-25 ratio	$\rho(RI_t, \log Y_t)$	$\rho(RI_t, \mathrm{adj}_t)$
Impact	22%	15%	6%	0.86	0.60
Cumulative	17%	11%	5%	0.78	0.66

price of investment = $1 - sub_t$

Conclusion: Takeaways from Topic 2

1. **Investment is lumpy** in the microdata

- Structural micro models provide evidence for **nonconvex** adjustment costs
 - SMM estimation

- Calibrated macro models indicate possibly generates time-varying aggregate elasticity
 - Aggregation and general equilibrium both important
 - Solving models with distribution in state vector