Micro Data for Macro Models Topic 3: Financial Frictions and Investment

Thomas Winberry

January 28th, 2019

- Two responses to failure of neoclassical investment model:
 - 1. Adjustment costs feature nonconvexities
 - 2. Financial frictions influence investment behavior
- Topic 2 discussed how we think about micro- and macro-level implications of nonconvexities

- Two responses to failure of neoclassical investment model:
 - 1. Adjustment costs feature nonconvexities
 - 2. Financial frictions influence investment behavior
- Topic 2 discussed how we think about micro- and macro-level implications of nonconvexities
- Topic 3 studies financial frictions
 - 1. Overview of mechanisms and empirical literature
 - 2. Evidence on heterogeneous responses to macro shocks
 - 3. Aggregate implications for:
 - Monetary shocks (Ottonello and Winberry 2018)
 - Financial shocks (Khan and Thomas 2013)

- Two responses to failure of neoclassical investment model:
 - 1. Adjustment costs feature nonconvexities
 - 2. Financial frictions influence investment behavior
- Topic 2 discussed how we think about micro- and macro-level implications of nonconvexities
- Topic 3 studies financial frictions
 - 1. Overview of mechanisms and empirical literature
 - 2. Evidence on heterogeneous responses to macro shocks
 - 3. Aggregate implications for:
 - Monetary shocks (Ottonello and Winberry 2017)
 - Financial shocks (Khan and Thomas 2013)

In period t = 0: continuum of firms $i \in [0, 1]$

- Initial endowment x_{i0} units of numeraire good
- Invest in capital k_{i1} to produce in t = 1
 - Equity finance: pay out of current equity
 - Debt finance: borrow $\frac{1}{R} \times b_{i1}$ from lenders

In period t = 0: continuum of firms $i \in [0, 1]$

- Initial endowment x_{i0} units of numeraire good
- Invest in capital k_{i1} to produce in t = 1
 - Equity finance: pay out of current equity
 - Debt finance: borrow $\frac{1}{R} \times b_{i1}$ from lenders

In period t = 1, produce and choose whether to repay debt

- Produce using capital: $z_{i1} \times k_{i1}^{\alpha}$
 - Productivity z_{i1} stochastic w/ support [$\underline{z}, \overline{z}$] and CDF G (z)
 - Capital fully depreciates after producing
- Repay debt b_{i1}

Profit maximization problem:

$$\max_{k_{i1}, b_{i1}} d_{i0} + \frac{1}{R} \mathbb{E} [d_{i1}]$$
$$d_{i0} = x_{i0} + \frac{1}{R} b_{i1} - k_{i1}$$
$$d_{i1} = z_{i1} k_{i1}^{\alpha} - b_{i1}$$

Profit maximization problem:

$$\max_{k_{i1}, b_{i1}} d_{i0} + \frac{1}{R} \mathbb{E} [d_{i1}]$$
$$d_{i0} = x_{i0} + \frac{1}{R} b_{i1} - k_{i1}$$
$$d_{i1} = z_{i1} k_{i1}^{\alpha} - b_{i1}$$

Solution illustrates Modigliani-Miller theorem:

$$k_{i1} = \left(\frac{\alpha \mathbb{E}[Z_{i1}]}{R}\right)^{\frac{1}{1-\alpha}}$$
any finite b_{i1} and d_{i0} optimal

Profit maximization problem:

$$\max_{k_{i1}, b_{i1}} d_{i0} + \frac{1}{R} \mathbb{E} [d_{i1}]$$
$$d_{i0} = x_{i0} + \frac{1}{R} b_{i1} - k_{i1}$$
$$d_{i1} = z_{i1} k_{i1}^{\alpha} - b_{i1}$$

Solution illustrates Modigliani-Miller theorem:

$$k_{i1} = \left(\frac{\alpha \mathbb{E}[Z_{i1}]}{R}\right)^{\frac{1}{1-\alpha}}$$
 any finite b_{i1} and d_{i0} optimal

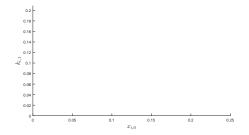
 \rightarrow Frictionless model makes no prediction about financial variables

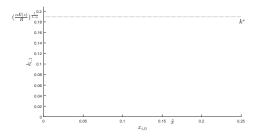
- 1. Frictions to equity finance:
 - Cannot raise new equity: $d_{i0} \ge 0$
 - Costly to raise new equity: pay some cost κ if $d_{i0} < 0$
 - Incentive to smooth dividends: $-\frac{\phi}{2}(d_{i0}-d^*)^2$

- 1. Frictions to equity finance:
 - Cannot raise new equity: $d_{i0} \ge 0$
 - Costly to raise new equity: pay some cost κ if $d_{i0} < 0$
 - Incentive to smooth dividends: $-\frac{\phi}{2} (d_{i0} d^*)^2$
- 2. Frictions to debt finance:
 - Collateral constraint: $b_{i0} \leq \theta \times$ some measure of collateral
 - Limited commitment: firms can default in period 1 \rightarrow lenders charge risk premium

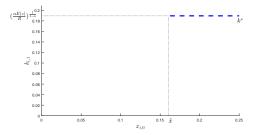
- 1. Frictions to equity finance:
 - Cannot raise new equity: $d_{i0} \ge 0$
 - Costly to raise new equity: pay some cost κ if $d_{i0} < 0$
 - Incentive to smooth dividends: $-\frac{\phi}{2} (d_{i0} d^*)^2$
- 2. Frictions to debt finance:
 - Collateral constraint: $b_{i0} \leq \theta \times$ some measure of collateral
 - Limited commitment: firms can default in period 1 \rightarrow lenders charge risk premium

Need both types of frictions for financial variables to matter for investment



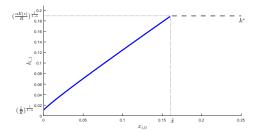


Unconstrained investment: $k^* = \left(\frac{\alpha \mathbb{E}[z_{i1}]}{R}\right)^{\frac{1}{1-\alpha}}$



If $x_{i0} \ge \hat{x} = k^* - \underline{z} (k^*)^{\alpha}$, firm is unconstrained:

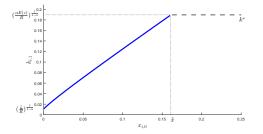
 $k_{i1} = k^*$ any b_{i1} and d_{i0} such that $b_{i1} \leq \underline{z} (k^*)^{\alpha}$ optimal



If $x_{i0} < \hat{x}$, firm is constrained:

$$k_{i1} = x_{i0} + \frac{1}{R} \underline{z} k_{i1}^{\alpha}$$

$$d_{i0} = 0, \, b_{i1} = \underline{z} k_{i1}^{\alpha}$$



Slope of investment rule for constrained firms is

slope of
$$k_{i1} = 1 + \frac{\alpha_{\overline{R}}^{\underline{Z}} k_{i1}^{\alpha-1}}{1 - \alpha_{\overline{R}}^{\underline{Z}} k_{i1}^{\alpha-1}} > 1$$

Wave 1

• Investment-cash flow sensitivity regressions: Fazarri, Hubbard, and Petersen (1988)

$$\frac{i_{it}}{k_{it}} = \alpha + \alpha_{\text{cost}} \text{cost}_{it} + \alpha_{\text{cash}} \frac{\text{cash}_{it}}{k_{it}} + \varepsilon_{it}$$

- Interpret α_{cash} as evidence of financial frictions

Wave 1

• Investment-cash flow sensitivity regressions: Fazarri, Hubbard, and Petersen (1988)

$$\frac{i_{it}}{k_{it}} = \alpha + \alpha_{\text{cost}} \text{cost}_{it} + \alpha_{\text{cash}} \frac{\text{cash}_{it}}{k_{it}} + \varepsilon_{it}$$

- Interpret $\alpha_{\rm cash}$ as evidence of financial frictions

Wave 2

- Cash flow correlated with serially correlated productivity \implies carefully specified mapping from cash flows to financial frictions
- Kaplan and Zingales (1997), Erickson and Whited (2000)

Wave 1

• Investment-cash flow sensitivity regressions: Fazarri, Hubbard, and Petersen (1988)

$$\frac{i_{it}}{k_{it}} = \alpha + \alpha_{\text{cost}} \text{cost}_{it} + \alpha_{\text{cash}} \frac{\text{cash}_{it}}{k_{it}} + \varepsilon_{it}$$

- Interpret α_{cash} as evidence of financial frictions

Wave 2

- Cash flow correlated with serially correlated productivity \implies carefully specified mapping from cash flows to financial frictions
- Kaplan and Zingales (1997), Erickson and Whited (2000)

Wave 3

- Credibly identified reduced-form studies: Rauh (2006)
- · Estimated structural models: Hennesy and Whited (2007)

1. Overview of mechanisms and empirical literature

2. Evidence on heterogeneous responses to macro shocks

- 3. Aggregate implications for:
 - Monetary shocks (Ottonello and Winberry 2017)
 - Financial shocks (Khan and Thomas 2013)

- Do financial constraints amplify aggregate response to monetary policy?
 - Financial accelerator: indirect effect through net worth x
 - Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Bernanke, Gertler, and Gilchrist (1994)
- Test using cross-sectional implication: constrained firms more responsive
 - Proxy for financial constraints with size

- Do financial constraints amplify aggregate response to monetary policy?
 - Financial accelerator: indirect effect through net worth x
 - Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Bernanke, Gertler, and Gilchrist (1994)
- Test using cross-sectional implication: constrained firms more responsive
 - Proxy for financial constraints with size
- **Main finding**: sales + inventory investment decline more for small firms following monetary tightening

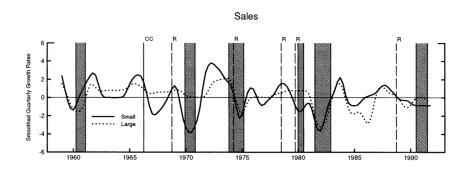
- Data derived from Quarterly Financial Reports for Manufacturing Corporations (QFR)
 - Survey of manufacturing firms, 1958 present
 - Records real + financial information
- Collapse into 8 aggregated time series by nominal assets
 - 1. Not firm-level data
 - 2. Inflation creates drift in share of firms in each bin
- Small firms = bottom 30th percentile of real sales in quarter t
 - 1. Adjust weighting of asset classes
 - 2. Adjust for inflation

Type of debt as percentage of total	Asset size (in millions of dollars)						
	All	< 50	50-250	250-1000	>1000		
Short-term debt	0.16	0.29	0.18	0.14	0.13		
Bank loans	0.08	0.25	0.15	0.09	0.04		
Comm. paper	0.05	0.00	0.00	0.03	0.07		
Other	0.02	0.04	0.02	0.02	0.02		
Long-term debt	0.84	0.71	0.82	0.86	0.87		
Bank loans	0.22	0.43	0.40	0.31	0.14		
Other	0.62	0.28	0.42	0.56	0.73		
% of bank loans	0.30	0.68	0.55	0.40	0.17		

 TABLE II

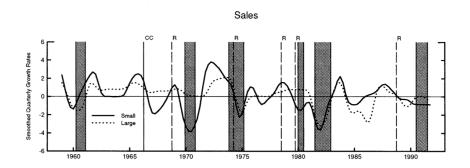
 COMPOSITION OF DEBT FINANCE BY ASSET SIZE, 1986:4

- Small firms more bank dependent
- Large firms have more long term debt + commercial paper

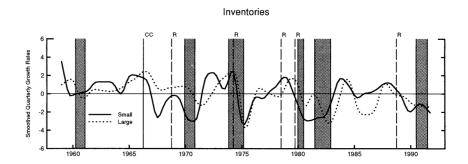


• CC = credit crunch

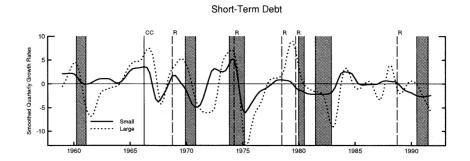
• R = Romer date for monetary tightening



- CC = credit crunch
- R = Romer date for monetary tightening
- · Sales of small firms declines by more in most episodes

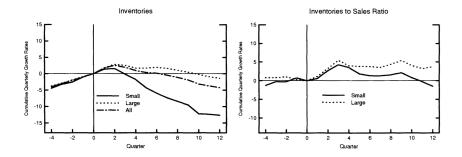


· Similar pattern for inventories, but less pronounced



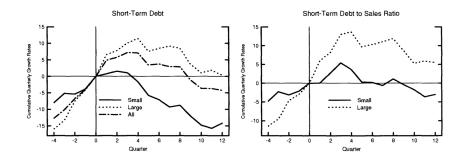
· Less clear pattern for short-term debt

Small Firms Contract More Following Romer Dates

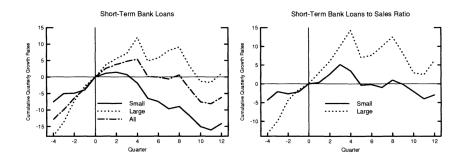


Average time series following Romer dates

Small Firms Contract More Following Romer Dates



Small Firms Contract More Following Romer Dates



- Gertler and Gilchrist (1994) based on aggregated QFR series
- Crouzet and Mehrotra (2017) reassess their findings using micro-data underlying QFR
 - · Focus on cyclical sensitivity rather than monetary shocks

Main findings:

- 1. Some evidence small firms more sensitive
- 2. Does not matter for explaining aggregate fluctuations
- 3. Cyclical sensitivity not driven by financial variables

- Data derived from IRS corporate tax returns + survey, 1977 present
 - Rotating panel of small firms (assets \$250k \$250m)
 - Universe of large firms (assets > \$250m)
 - Firm time used by researchers, so a lot of work!
- Advantages:
 - 1. Representative sample of manufacturing firms
 - 2. High-quality balance sheet information
 - 3. Quarterly frequency
- Disadvantages:
 - 1. Only manufacturing firms (so far)
 - 2. Short panel of small firms

Firms' Balance Sheets by Size

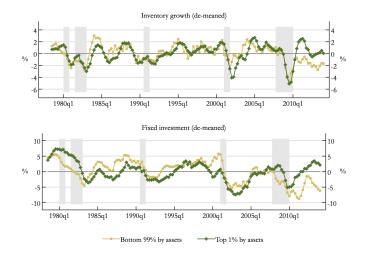
<i>a</i> :	0-90th	90-99th	99-99.5th	>99.5tl
Size group Assets	0-90th	90-99th	99-99.5th	>99.50
Financial assets, incl. cash	0.149	0.099	0.074	0.05
Short-term assets				
Receivables	0.284	0.229	0.165	0.12
Inventory	0.218	0.241	0.172	0.13
Other	0.040	0.037	0.042	0.04
Long-term assets				
Net property, plant and equipment	0.269	0.288	0.289	0.28
Other, incl. intangibles	0.050	0.106	0.259	0.36
Liabilities				
Debt				
Due in 1 year or less				
Bank debt	0.083	0.083	0.032	0.01
Non-bank debt	0.035	0.019	0.019	0.02
Due in more than 1 year				
Bank debt	0.107	0.111	0.110	0.07
Non-bank debt	0.123	0.079	0.141	0.17
Trade payables	0.156	0.123	0.085	0.07
Other, incl. capital leases	0.099	0.121	0.187	0.23
Equity	0.393	0.463	0.426	0.41

- Small firms more bank dependent and have more short term debt
- · Small firms also have more short-term assets



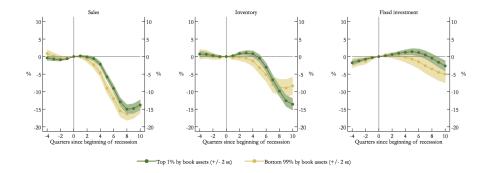
Small firm sales fall more during 1981 and 2008 recession

Small vs. Large Firms Over the Cycle



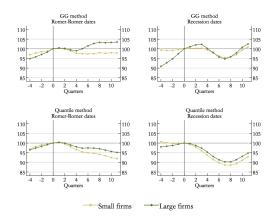
Less clear picture for inventories and capital investment

Small vs. Large Firms Over the Cycle



Results driven by 1981 and 2008 recessions

How to Reconcile with Gertler and Gilchrist?

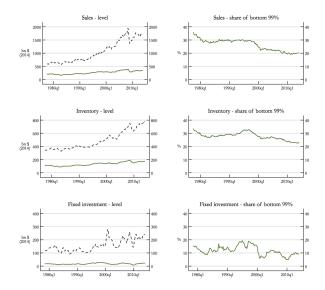


Different cyclical responsiveness for monetary shocks vs.
 recessions

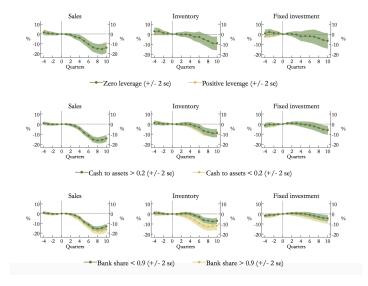
Differences Unimportant for Aggregate Dynamics

- Aggregate decomposition
 - $G_t = g_t^{\text{large}} + s_{t-4} \left(g_t^{\text{small}} g_t^{\text{large}} \right) + \text{cov}_t$
- Counterfactual 1 = $G_t s_{t-4} \left(g_t^{\text{small}} g_t^{\text{large}} \right)$
- Counterfactual 2 = g_t^{large}

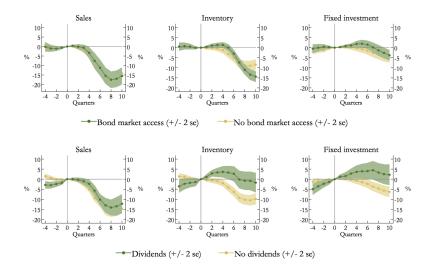
Why No Agg. Differences? High Concentration



Direct Test: Differences by Financial Characteristics?



Direct Test: Differences by Financial Characteristics?



Wrapping Up Gerter-Gilchrist and Crouzet-Mehrotra

• Do financial frictions amplify response to shocks?

- Mixed evidence in cross-sectional data
 - Depends on weighting of firms
 - Depends on shock

1. Overview of mechanisms and empirical literature

2. Evidence on heterogeneous responses to macro shocks

- 3. Aggregate implications for:
 - Monetary shocks (Ottonello and Winberry 2018)
 - Financial shocks (Khan and Thomas 2013)

Motivation

- Want to understand the role of financial frictions in shaping the investment channel of monetary policy
- Which firms respond the most to monetary policy?

Motivation

- Want to understand the role of financial frictions in shaping the investment channel of monetary policy
- Which firms respond the most to monetary policy?
- Firms more affected by financial frictions:
 - Have steeper marginal cost of investment \implies dampen
 - More sensitive to cash flows + collateral values \implies amplify (financial accelerator across firms)
- We revisit this question with
 - 1. New cross-sectional evidence
 - 2. Heterogeneous firm New Keynesian model

Descriptive evidence on heterogeneous responses using high-frequency shocks and quarterly Compustat

- 1. Firms with low leverage, good ratings, and large "distance to default" are more responsive
- 2. Heterogeneity primarily driven by distance to default

Descriptive evidence on heterogeneous responses using high-frequency shocks and quarterly Compustat

- 1. Firms with low leverage, good ratings, and large "distance to default" are more responsive
- 2. Heterogeneity primarily driven by distance to default

Heterogeneous firm New Keynesian model

with financial frictions arising from default risk

- 1. Model consistent with heterogeneous responses
 - Firms with low risk have flatter marginal cost curve
- 2. Aggregate response depends on distribution of default risk
 - Driven by low-risk firms, which is time-varying

Descriptive evidence on heterogeneous responses using high-frequency shocks and quarterly Compustat

- 1. Firms with low leverage, good ratings, and large "distance to default" are more responsive
- 2. Heterogeneity primarily driven by distance to default

Heterogeneous firm New Keynesian model with financial frictions arising from default risk

- 1. Model consistent with heterogeneous responses
 - Firms with low risk have flatter marginal cost curve
- 2. Aggregate response depends on distribution of default risk
 - Driven by low-risk firms, which is time-varying
- \implies Default risk dampens response to monetary policy

1. Household Heterogeneity and Monetary Policy

Doepke and Schneider (2006); Auclert (2015); Werning (2015); Wong (2016); Gornermann, Kuester, Nakajima (2016); Kaplan, Moll, and Violante (2018)

2. Financial Heterogeneity and Investment

Khan and Thomas (2013); Gilchrist, Sim and Zakrajsek (2014); Khan, Senga and Thomas (2016)

- 3. Financial Frictions and Monetary Transmission
 - Gertler, and Gilchrist (1994); Kashyap, Lamont, and Stein (1994); Kashyap and Stein (1995); Jeenas (2018)
 - Bernanke, Gertler, and Gilchrist (1999)

Descriptive Empirical Evidence

- 1. Monetary policy shocks $\varepsilon_t^{\rm m}$: high-frequency identification
 - Compare FFR future before vs. after FOMC announcement
 - Assume nothing else affects FFR in window
 - Time aggregate to quarterly frequency

• Summary Statistics

- 1. Monetary policy shocks ε_t^m : high-frequency identification
 - Compare FFR future before vs. after FOMC announcement
 - Assume nothing else affects FFR in window
 - Time aggregate to quarterly frequency
- 2. Firm-level outcomes: quarterly Compustat
 - Investment $\Delta \log k_{it+1}$: capital stock from net investment
 - Leverage ℓ_{it} : debt divided by total assets
 - Credit rating cr_{jt}: S&P rating of firm's long-term debt
 - Distance to default dd_{jt} : constructed following Gilchrist and Zakrasjek (2012) Sample Construction Compustat vs. NIPA

- 1. Monetary policy shocks ε_t^m : high-frequency identification
 - Compare FFR future before vs. after FOMC announcement
 - Assume nothing else affects FFR in window
 - Time aggregate to quarterly frequency
- 2. Firm-level outcomes: quarterly Compustat
 - Investment $\Delta \log k_{it+1}$: capital stock from net investment
 - Leverage ℓ_{it} : debt divided by total assets
 - Credit rating cr_{jt}: S&P rating of firm's long-term debt
 - Distance to default dd_{jt} : constructed following Gilchrist and Zakrasjek (2012) Sample Construction Compustat vs. NIPA

Merge 1990q1 - 2007q2

(a) Marginal Distributions								
Statistic	$\Delta \log k_{jt+1}$	ℓ _{jt}	$\mathbb{1}\left\{ \operatorname{cr}_{jt}\geq A\right\}$	dd _{jt}				
Mean	0.005	0.267	0.024	5.744				
Median	-0.004	0.204	0.000	4.704				
S.D.	0.093	0.361	0.154	5.032				
95th Percentile	0.132	0.725	0.000	14.952				

(b) Correlation Matrix (raw variables)

(c) Correlation matrix (residualized)

		`	/			· · · · · · · · · · · · · · · · · · ·	/
	ℓ_{jt}	$\mathbb{1}\left\{\operatorname{cr}_{jt}\geq A\right\}$	dd _{jt}		ℓ_{jt}	$\mathbb{I}\left\{\operatorname{cr}_{jt}\geq A\right\}$	dd _{jt}
l _{jt}	1.00			l _{jt}	1.00		
(p-value)				(p-value)			
$\mathbb{1}\left\{ \operatorname{cr}_{it}\geq A\right\}$	-0.02	1.00		$\mathbb{1}\left\{ \operatorname{cr}_{it}\geq A\right\}$	-0.02	1.00	
,	(0.00)			,	(0.00)		
dd _{it}	-0.46	0.21	1.00	dd _{it}	-0.38	0.05	1.00
	(0.00)	(0.00)			(0.00)	(0.00)	

$$\Delta \log k_{it+1} = \beta y_{it-1} \varepsilon_t^{\mathsf{m}} + \alpha_i + \alpha_{st} + \Gamma' Z_{it-1} + \varepsilon_{it}$$

- Coefficient of interest β: how semi-elasticity of investment w.r.t. monetary policy depends on leverage
- Want to isolate differences due to leverage
 - α_{st} : compare within a sector-quarter
 - Z_{it-1} : conditional on financial position y_{it-1} , sales growth, log total assets, current assets share, fiscal quarter dummy
- Standard errors clustered two-way by firm and quarter

Low-Risk Firms More Responsive

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$leverage \times shock$	-0.66** (0.27)	-0.52** (0.25)					
$\mathbb{1}\left\{ \mathrm{cr}_{jt}\geq A\right\}$	()	()	2.69** (1.16)				
$dd \times shock$			~ /	1.06** (0.45)			
ffr shock				()			
Observations	239259	239259	239259	151433			
R^2	0.108	0.119	0.116	0.137			
Firm controls	no	yes	yes	yes			
Time sector FE	yes	yes	yes	yes			
Time clustering	yes	yes	yes	yes			

$$\Delta \log k_{it+1} = \beta y_{it-1} \varepsilon_t^{m} + \alpha_i + \alpha_{st} + \Gamma' Z_{it-1} + \varepsilon_{it}$$

- Monetary expansion has positive sign $(-\varepsilon_t^{\rm m})$
- Standardize leverage and distance to default over all firms and quarters

Low-Risk Firms More Responsive

	(7)	(0)	(0)	(4)	(5)	(6)	(7)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$leverage \times shock$	-0.66** (0.27)	-0.52** (0.25)			-0.50* (0.25)	-0.47 (0.39)	
$\mathbb{1}\left\{\mathrm{cr}_{jt}\geq A\right\}$	(0.27)	(0.23)	2.69** (1.16)		(0.23) 2.41** (1.19)	(0.59)	
$dd \times shock$			(1.10)	1.06**	(1.19)	0.70	
ffr shock				(0.45)		(0.44)	
Observations	239259	239259	239259	151433	239259	151433	
R^2	0.108	0.119	0.116	0.137	0.119	0.139	
Firm controls	no	yes	yes	yes	yes	yes	
Time sector FE	yes	yes	yes	yes	yes	yes	
Time clustering	yes	yes	yes	yes	yes	yes	

$$\Delta \log k_{it+1} = \beta y_{it-1} \varepsilon_t^{\mathsf{m}} + \alpha_i + \alpha_{st} + \Gamma' Z_{it-1} + \varepsilon_{it}$$

- Monetary expansion has positive sign $(-\varepsilon_t^{\rm m})$
- Standardize leverage and distance to default over all firms and quarters

Low-Risk Firms More Responsive

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
leverage \times shock	-0.66** (0.27)	-0.52** (0.25)			-0.50* (0.25)	-0.47 (0.39)	- <mark>0.24</mark> (0.38)
$\mathbb{1}\{\operatorname{cr}_{jt} \geq A\}$	~ /		2.69** (1.16)		2.41* [*] (1.19)	()	· · ·
$dd \times shock$				1.06** (0.45)		0.70 (0.44)	1.07** (0.52)
ffr shock						(-)	1.63** (0.72)
Observations	239259	239259	239259	151433	239259	151433	151433
R^2	0.108	0.119	0.116	0.137	0.119	0.139	0.126
Firm controls	no	yes	yes	yes	yes	yes	yes
Time sector FE	yes	yes	yes	yes	yes	yes	no
Time clustering	yes	yes	yes	yes	yes	yes	yes

$$\Delta \log k_{it+1} = \beta y_{it-1} \varepsilon_t^{\mathsf{m}} + \alpha_i + \alpha_{st} + \Gamma' Z_{it-1} + \varepsilon_{it}$$

- Monetary expansion has positive sign $(-\varepsilon_t^{\rm m})$
- Standardize leverage and distance to default over all firms and quarters

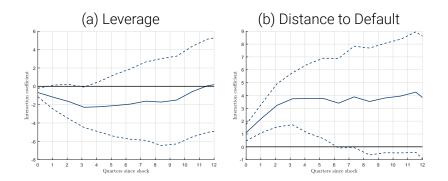
Results Hold Using Only Within-Firm Variation

	(1)	(2)	(3)	(4)	(5)
leverage \times ffr shock	-0.81** (0.31)	-0.68** (0.28)		-0.33 (0.37)	-0.21 (0.38)
$dd \times ffr shock$	()	()	1.10*** (0.39)	0.89** (0.38)	1.12** (0.47)
ffr shock			(0.05)	(0.00)	1.64** (0.77)
Observations	219702	219702	151433	151433	151433
R^2	0.113	0.124	0.137	0.139	0.126
Firm controls	no	yes	yes	yes	yes
Time sector FE	yes	yes	yes	yes	no
Time clustering	yes	yes	yes	yes	yes

 $\Delta \log k_{it+1} = \beta (y_{it-1} - \mathbb{E}_i [y_{it}]) \varepsilon_t^{\mathsf{m}} + \alpha_i + \alpha_{st} + \Gamma_1' Z_{it-1} + \Gamma_2 (y_{it-1} - \mathbb{E}_i [y_{it}]) Y_{t-1} + \varepsilon_{it}$

- Monetary expansion has positive sign $(-\varepsilon_t^m)$
- · Standardize demeaned leverage and distance to default over all firms and quarters

Dynamics of Differences Across Firms



$$\log k_{it+h+1} - \log k_{it} = \beta_h (y_{it-1} - \mathbb{E}_i [y_{it}]) \varepsilon_t^m + \alpha_{ih} \alpha_{sth} + \Gamma_{1h}' Z_{it-1} + \Gamma_{2h} (y_{it-1} - \mathbb{E}_i [y_{it}]) Y_{t-1} + \varepsilon_{ith}$$

Heterogeneous Firm New Keynesian Model

1. Investment block

- Heterogeneous firms invest s.t. default risk
- · Intermediary lends resources from household to firms

2. New Keynesian block

- Retailers differentiate output s.t. sticky prices
- Final good producer combines goods into final output
- Monetary authority follows Taylor rule (monetary shock)
- Capital good producer with adjustment costs

3. Representative household

Owns firms + labor-leisure choice

1. **Exogenous exit**: w/ i.i.d. prob π_d , forced to exit at end of period

- 1. **Exogenous exit**: w/ i.i.d. prob π_d , forced to exit at end of period
- 2. Default decision
 - If default, value = 0
 - If continue, repay debt b_{jt} and pay operating cost ξ

- 1. **Exogenous exit**: w/ i.i.d. prob π_d , forced to exit at end of period
- 2. Default decision
 - If default, value = 0
 - If continue, repay debt b_{jt} and pay operating cost ξ
- 3. **Production**: $y_{jt} = z_{jt} (\omega_{jt} k_{jt})^{\theta} n_{it}^{\nu}$, $\theta + \nu < 1$ at price p_t
 - $\log z_{jt+1} = \rho \log z_{jt} + \varepsilon_{jt+1}^z, \varepsilon_{jt+1}^z \sim N(0, \sigma^2)$
 - $\log \omega_{jt} \sim N(-\sigma_{\omega}^2/2, \sigma_{\omega}^2)$ i.i.d.
 - Undepreciated captial $(1 \delta)\omega_{jt}k_{jt}$

- 1. **Exogenous exit**: w/ i.i.d. prob π_d , forced to exit at end of period
- 2. Default decision
 - If default, value = 0
 - If continue, repay debt b_{jt} and pay operating cost ξ
- 3. **Production**: $y_{jt} = z_{jt} (\omega_{jt} k_{jt})^{\theta} n_{it}^{\nu}$, $\theta + \nu < 1$ at price p_t
 - $\log z_{jt+1} = \rho \log z_{jt} + \varepsilon_{jt+1}^z, \varepsilon_{jt+1}^z \sim N(0, \sigma^2)$
 - $\log \omega_{jt} \sim N(-\sigma_{\omega}^2/2, \sigma_{\omega}^2)$ i.i.d.
 - Undepreciated captial $(1 \delta)\omega_{jt}k_{jt}$
- 4. **Investment**: choose $q_t k_{jt+1}$ and financing b_{jt+1} , d_{jt}
 - External finance b_{jt+1} at price $Q_t(z_{jt}, k_{jt+1}, b_{jt+1})$
 - Internal finance subject to $d_{jt} \ge 0$

Financial Intermediary

- · Financial intermediary lends from households to firms
 - No default: get $1/\Pi_{t+1}$ (nominal debt)
 - Default: get up to $\alpha q_{t+1}\omega_{jt+1}k_{jt+1}$ per unit of debt

Financial Intermediary

- · Financial intermediary lends from households to firms
 - No default: get $1/\Pi_{t+1}$ (nominal debt)
 - Default: get up to $\alpha q_{t+1}\omega_{jt+1}k_{jt+1}$ per unit of debt

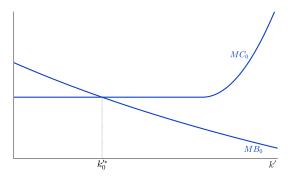
$$\begin{aligned} \mathcal{Q}_t(z,k',b') &= \mathbb{E}_t[\Lambda_{t+1}((1-\mathbb{1}\{\text{default}_{t+1}(z',\omega',\zeta',k',b')\}) \times \frac{1}{\Pi_{t+1}}) \\ &+ \mathbb{1}\{\text{default}_{t+1}(z',\omega',\zeta',k',b')\} \times \min\{1,\alpha\frac{q_{t+1}\omega'k'}{b'/\Pi_{t+1}}\})] \end{aligned}$$

An Equilibrium of this Model Satisfies

- 1. **Heterogeneous firms** choose investment $k'_t(z, \omega, k, b)$, financing $b'_t(z, \omega, k, b)$, and default decision
- 2. Financial intermediaries price default risk $Q_t(z, k', b')$
- 3. Firm entry with shifted initial distribution Details
- 4. Retailers and final good producer generate Phillips Curve Details
- 5. Monetary authority follows Taylor rule Details
- 6. Capital good producer generates capital price q_t · Details
- 7. Household supplies labor N_t and generates SDF w/ Λ_{t+1} Details

Channels of Investment Response to Monetary Policy

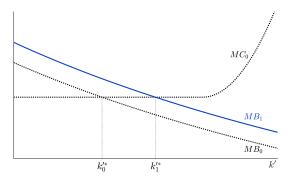
Risk-Free Firms' Response



$$q_{t} = \frac{1}{R_{t}} \left(\mathbb{E}_{t} \left[\mathsf{MRPK}_{t+1}(z', k') \right] + \frac{\mathbb{C}\mathsf{ov}_{t}(\mathsf{MRPK}_{t+1}(z', k'), 1 + \lambda_{t+1}(z', k', b'))}{\mathbb{E}_{t}[1 + \lambda_{t+1}(z', k', b'))]} \right)$$

$$\mathsf{MRPK}_{t+1}(z',k') = \frac{\partial}{\partial k'} \left(\max_{n'} p_{t+1} z' (\omega'k')^{\theta} (n')^{\nu} - w_{t+1} n' + q_{t+1} (1-\delta) \omega'k' \right)$$

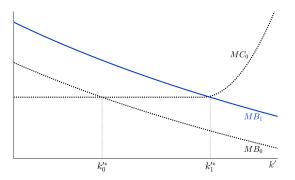
Risk-Free Firms' Response: Discount Rate Falls



$$q_{t} = \frac{1}{R_{t}} \left(\mathbb{E}_{t} \left[\mathsf{MRPK}_{t+1}(z', k') \right] + \frac{\mathbb{C}ov_{t}(\mathsf{MRPK}_{t+1}(z', k'), 1 + \lambda_{t+1}(z', k', b'))}{\mathbb{E}_{t}[1 + \lambda_{t+1}(z', k', b'))]} \right)$$

$$\mathsf{MRPK}_{t+1}(z',k') = \frac{\partial}{\partial k'} \left(\max_{n'} p_{t+1} z' (\omega'k')^{\theta} (n')^{\nu} - w_{t+1} n' + q_{t+1} (1-\delta) \omega'k' \right)$$

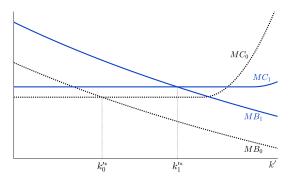
Risk-Free Firms' Response: Future Revenue Rises



$$q_{t} = \frac{1}{R_{t}} \left(\mathbb{E}_{t} \left[\mathsf{MRPK}_{t+1}(z', k') \right] + \frac{\mathbb{C}ov_{t}(\mathsf{MRPK}_{t+1}(z', k'), 1 + \lambda_{t+1}(z', k', b'))}{\mathbb{E}_{t}[1 + \lambda_{t+1}(z', k', b'))]} \right)$$

$$\mathsf{MRPK}_{t+1}(z',k') = \frac{\partial}{\partial k'} \left(\max_{n'} p_{t+1} z' (\omega'k')^{\theta} (n')^{\nu} - w_{t+1} n' + q_{t+1} (1-\delta) \omega'k' \right)$$

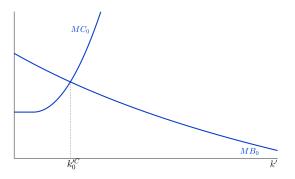
Risk-Free Firms' Response: Price of Capital Rises



$$q_{t} = \frac{1}{R_{t}} \left(\mathbb{E}_{t} \left[\mathsf{MRPK}_{t+1}(z', k') \right] + \frac{\mathbb{C}\mathsf{ov}_{t}(\mathsf{MRPK}_{t+1}(z', k'), 1 + \lambda_{t+1}(z', k', b'))}{\mathbb{E}_{t}[1 + \lambda_{t+1}(z', k', b'))]} \right)$$

$$\mathsf{MRPK}_{t+1}(z',k') = \frac{\partial}{\partial k'} \left(\max_{n'} p_{t+1} z' (\omega'k')^{\theta} (n')^{\nu} - w_{t+1} n' + q_{t+1} (1-\delta) \omega'k' \right)$$

Risky Firms' Response

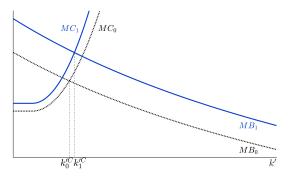


$$\begin{pmatrix} q_{t} - \varepsilon_{R,k'} \frac{b'}{k'} \end{pmatrix} \frac{R_{t}^{\text{sp}}(z,k',b')}{1 - \varepsilon_{R,b'}} = \frac{1}{R_{t}} \left(\mathbb{E}_{t} \left[\text{MRPK}_{t+1}(z',k') \right] + \frac{\mathbb{C}\text{ov}_{t}(\text{MRPK}_{t+1}(z',k'), 1 + \lambda_{t+1}(z',k',b'))}{\mathbb{E}_{t}[1 + \lambda_{t+1}(z',k',b'))]} \right)$$

$$d = 0 \implies q_{t}k' = \max_{n} p_{t}z(\omega k)^{\theta}n^{\nu} - w_{t}n - b - \xi + q_{t}(1 - \delta)\omega k + \frac{1}{R_{t}(z,k',b')}b'$$

$$\text{MRPK}_{t+1}(z',k') = \frac{\partial}{\partial k'} \left(\max_{n'} p_{t+1}z'(\omega'k')^{\theta}(n')^{\nu} - w_{t+1}n' + q_{t+1}(1 - \delta)\omega'k' \right)$$

Risky Firms' Response: Previous Channels

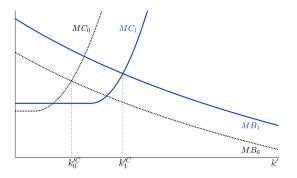


$$\begin{pmatrix} q_{t} - \varepsilon_{R,k'} \frac{b'}{k'} \end{pmatrix} \frac{R_{t}^{\text{sp}}(z,k',b')}{1 - \varepsilon_{R,b'}} = \frac{1}{R_{t}} \left(\mathbb{E}_{t} \left[\text{MRPK}_{t+1}(z',k') \right] + \frac{\mathbb{C}\text{ov}_{t}(\text{MRPK}_{t+1}(z',k'),1 + \lambda_{t+1}(z',k',b'))}{\mathbb{E}_{t}[1 + \lambda_{t+1}(z',k',b')]} \right)$$

$$d = 0 \implies q_{t}k' = \max_{n} p_{t}z(\omega k)^{\theta}n^{\nu} - w_{t}n - b - \xi + q_{t}(1 - \delta)\omega k + \frac{1}{R_{t}(z,k',b')}b'$$

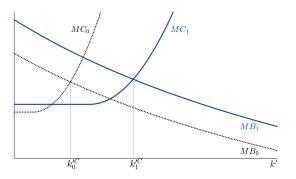
$$\text{MRPK}_{t+1}(z',k') = \frac{\partial}{\partial k'} \left(\max_{n'} p_{t+1}z'(\omega'k')^{\theta}(n')^{\nu} - w_{t+1}n' + q_{t+1}(1 - \delta)\omega'k' \right)$$

Risky Firms' Response: Cash Flow Rises



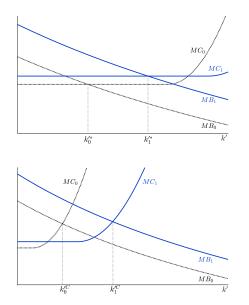
$$\begin{pmatrix} q_{t} - \varepsilon_{R,k'} \frac{b'}{k'} \end{pmatrix} \frac{R_{t}^{\text{sp}}(z,k',b')}{1 - \varepsilon_{R,b'}} = \frac{1}{R_{t}} \left(\mathbb{E}_{t} \left[\text{MRPK}_{t+1}(z',k') \right] + \frac{\mathbb{C}\text{ov}_{t}(\text{MRPK}_{t+1}(z',k'),1 + \lambda_{t+1}(z',k',b'))}{\mathbb{E}_{t}[1 + \lambda_{t+1}(z',k',b')]} \right) \\ d = 0 \implies q_{t}k' = \max_{n} p_{t}z(\omega k)^{\theta}n^{\nu} - w_{t}n - b - \xi + q_{t}(1 - \delta)\omega k + \frac{1}{R_{t}(z,k',b')}b' \\ \text{MRPK}_{t+1}(z',k') = \frac{\partial}{\partial k'} \left(\max_{n'} p_{t+1}z'(\omega'k')^{\theta}(n')^{\nu} - w_{t+1}n' + q_{t+1}(1 - \delta)\omega'k' \right)$$

Risky Firms' Response: Recovery Value Rises



$$\begin{pmatrix} q_{t} - \varepsilon_{R,k'} \frac{b'}{k'} \end{pmatrix} \frac{R_{t}^{\text{sp}}(z,k',b')}{1 - \varepsilon_{R,b'}} = \frac{1}{R_{t}} \left(\mathbb{E}_{t} \left[\mathsf{MRPK}_{t+1}(z',k') \right] + \frac{\mathbb{C}\mathsf{ov}_{t}(\mathsf{MRPK}_{t+1}(z',k'), 1 + \lambda_{t+1}(z',k',b'))}{\mathbb{E}_{t}[1 + \lambda_{t+1}(z',k',b')]} \right) \\ d = 0 \implies q_{t}k' = \max_{n} p_{t}z(\omega k)^{\theta}n^{\nu} - w_{t}n - b - \xi + q_{t}(1 - \delta)\omega k + \frac{1}{R_{t}(z,k',b')}b' \\ R_{t}^{\text{sp}}(z,k',b') = \mathsf{Prob}\left(\mathsf{default}_{t+1}(z',k',b')\right) \left(1 - \min\{1, \alpha \frac{q_{t+1}\omega'k'}{b'/\Pi_{t+1}}\}\right)$$

Which Is More Responsive? Quantitative Question



Calibration

- Fix subset of parameters to standard values Details
- **Choose** parameters governing idiosyncratic shocks, financial frictions, and lifecycle to match empirical targets

Parameter	Description	Value
Idiosyncratic	shock processes	
ρ	Persistence of TFP	
σ	SD of innovations to TFP	
σ_{ω}	SD of capital quality	
Financial fric	ctions	
ξ	Operating cost	
α	Loan recovery rate	
Firm lifecycl	e	
m	Mean shift of entrants' prod.	
S	SD shift of entrants' prod.	
k ₀	Initial capital	
π_d	Exogeneous exit rate	

Choose labor disutility Ψ to ensure steady state employment = 0.6

Moment	Description	Data	Model
Investment behav	rior (annual)		
$\sigma\left(\frac{i}{k}\right)$	SD investment rate	33.7%	
Financial behavio	r (annual)		
$\mathbb E$ [default rate]	Mean default rate	3.00%	
\mathbb{E} [credit spread]	Mean credit spread	2.35%	
$\mathbb{E}\left[b/k ight]$	Mean gross leverage ratio	34.4%	
Firm Growth (ann	ual)		
$\mathbb{E}[n_1]/\mathbb{E}[n]$	Rel. size of age 1 firms	28%	
$\mathbb{E}[n_2]/\mathbb{E}[n]$	Rel. size of age 2 firms	36%	
Firm Exit (annual)			
\mathbb{E} [exit rate]	Mean exit rate	8.7%	
$\mathbb{E}[M_1]/\mathbb{E}[M]$	Share of firms at age 1	10.5%	
$\mathbb{E}[M_2]/\mathbb{E}[M]$	Share of firms at age 2	8.1%	

	N	<u> </u>	
Moment	Description	Data	Model
Investment behav	vior (annual)		
$\sigma\left(\frac{i}{k}\right)$	SD investment rate	33.7%	31.8%
Financial behavio	r (annual)		
$\mathbb E$ [default rate]	Mean default rate	3.00%	2.01%
𝔅 [credit spread]	Mean credit spread	2.35%	2.54%
$\mathbb{E}\left[b/k\right]$	Mean gross leverage ratio	34.4%	33.6%
Firm Growth (ann	ual)		
$\mathbb{E}[n_1]/\mathbb{E}[n]$	Rel. size of age 1 firms	28%	42%
$\mathbb{E}[n_2]/\mathbb{E}[n]$	Rel. size of age 2 firms	36%	66%
Firm Exit (annual)			
\mathbb{E} [exit rate]	Mean exit rate	8.7%	7.88%
$\mathbb{E}[M_1]/\mathbb{E}[M]$	Share of firms at age 1	10.5%	7.4%
$\mathbb{E}[M_2]/\mathbb{E}[M]$	Share of firms at age 2	8.1%	6.1%

Parameter	Description	Value		
Idiosyncratio	c shock processes			
ρ	Persistence of TFP	0.86		
σ	SD of innovations to TFP	0.03		
σ_{ω}	SD of capital quality	0.04		
Financial frie	ctions			
ξ	Operating cost	0.02		
α	Loan recovery rate	0.91		
Firm lifecycle				
т	Mean shift of entrants' prod.	2.92		
S	SD shift of entrants' prod	1.11		
k_0	Initial capital	0.46		
π_d	Exogeneous exit rate	0.02		

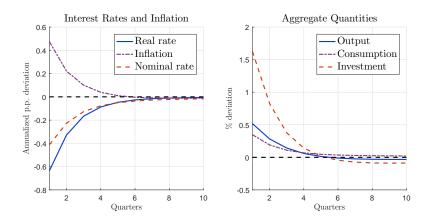
Choose labor disutility Ψ to ensure steady state employment = 0.6

- Fix subset of parameters to standard values Details
- **Choose** parameters governing idiosyncratic shocks, financial frictions, and lifecycle to match empirical targets

- Fix subset of parameters to standard values Details
- **Choose** parameters governing idiosyncratic shocks, financial frictions, and lifecycle to match empirical targets
- Analyze sources of financial heterogeneity
 Details
 - 1. Lifecycle dynamics
 - 2. Productivity shocks
- · Verify model (roughly) matches untargetted statistics
 - 1. Lifecycle dynamics Details
 - 2. Distribution of investment and leverage Details
 - 3. Investment-cash flow sensitivity
 Details

Quantitative Analysis of Monetary Transmission Mechanism

Aggregate Monetary Transmission Mechanism

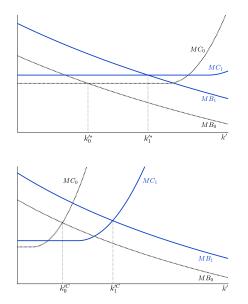


- Peak responses in line with VARs (CEE 2005)
- Not designed to generate hump-shaped responses

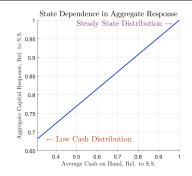
	Model		Data	
	(1)	(2)	(1)	(2)
leverage \times ffr shock	-1.193	-0.955	-0.94***	-0.73***
			(0.33)	(0.29)
R ²	0.151	0.216	0.107	0.119
Time FE	yes	yes	yes	yes
Firm controls	no	yes	no	yes

$$\Delta \log k_{it+1} = \beta \ell_{it-1} \varepsilon_t^{\mathsf{m}} + \alpha_i + \alpha_{st} + \Gamma' Z_{it-1} + \varepsilon_{it}$$

Heterogeneous Responses Consistent with Data



Aggregate Effect Depends on Distribution of Risk



Back of the envelope calculation:

- Fix investment response across state space
- · Vary initial distribution of cash on hand:

$$\mu(z, x) = \omega \underbrace{\mu_{\text{normal}}(z, x)}_{\text{s.s.}} + (1 - \omega) \underbrace{\mu_{\text{bad}}(z, x)}_{\text{s.s., low prod.}}$$

Conclusion

Default risk dampens response of investment to monetary policy

Default risk dampens response of investment to monetary policy

1. Which firms respond the most?

- Firms with low leverage and high credit ratings
- Indicates default risk is key to micro response

2. Implications for aggregate transmission?

- Low-risk firms drive aggregate response
- Suggests that aggregate effect depends on distribution of default risk

Appendix

Constructing Investment

- 1. Start with firms' reported level of plant, property, and equipment (ppegtq) as firms' initial value of capital
- 2. Compute differences of net plant, property, and equipment (ppentq) to get net investment
- 3. Interpolate missing values when missing a single quarter in the data
- 4. Compute gross investment using depreciation rates of Fixed Asset tables from NIPA at the industry level
- 5. Trim the data: extreme values and short spells

Sectors considered:

- 1. Agriculture, Forestry, And Fishing: sic < 10
- 2. Mining: sic∈ [10, 14]
- 3. Construction: $sic \in [15, 17]$
- 4. Manufacturing: sic∈ [20, 39]
- 5. Transportation, Communications, Electric, Gas, And Sanitary Services: sic∈ [40, 49]
- 6. Wholesale Trade: $sic \in [50, 51]$
- 7. Retail Trade: sic∈ [52, 59]
- 8. Services: sic∈ [70, 89]

Sectors not considered:

- 1. Finance, Insurance, and Real Estate: sic∈ [60, 67]
- 2. Public Administration: sic∈ [91, 97]

- 1. Leverage: Ratio of total debt (dlcq+dlttq) to total assets (atq).
- 2. Net leverage: Subtract current assets (actq) net of other current liabilities (lctq) from debt liabilities to total assets .
 - Current assets consists of cash and other assets expected to be realized in cash within the next 12 months.
 - · Current liabilities are those due within one year.
- 3. Real Sales Growth: log-differences in sales (saleq) deflated using CPI.
- 4. Size: Log of total assets.

- · Firms exit due to exit shocks and default
- One new entrant for each exiting firm
 - 1. Draw productivity z_{it} from shifted distribution

$$\log z_{jt} \sim N\left(-\frac{\sigma}{\sqrt{1-\rho^2}}, \frac{\sigma^2}{1-\rho^2}\right)$$

- 2. Draw capital quality ω_{it} from ergodic distribution
- 3. Endowed with k_0 units of capital and $b_0 = 0$ units of debt
 - \implies incumbent w/ initial state ($z_{jt}, \omega_{jt}, k_0, 0$)

- Monopolistically competitive retailers
 - Technology: $\tilde{y}_{it} = y_{it} \implies$ real marginal cost $= p_t$
 - Set price \tilde{p}_{it} s.t. quadratic cost $-\frac{\varphi}{2} \left(\frac{\tilde{p}_{it}}{\tilde{p}_{it-1}} 1\right)^2 Y_t$
- Perfectly competitive final good producer

• Technology:
$$Y_t = \left(\int \tilde{y}_{it}^{\frac{\gamma-1}{\gamma}} di\right)^{\frac{\gamma}{\gamma-1}} \implies P_t = \left(\int \tilde{p}_{it}^{1-\gamma} di\right)^{\frac{1}{1-\gamma}}$$

Implies New Keynesian Phillips Curve

$$\pi_t = rac{\gamma-1}{arphi} \log rac{
ho_t}{
ho^*} + eta \mathbb{E}_t \left[\pi_{t+1}
ight]$$

The Rest of the Model • Back

Monetary authority follows Taylor rule

$$\log R_t^{\text{nom}} = \log \frac{1}{\beta} + \varphi_{\pi} \Pi_t + \frac{\varepsilon_t^{\text{m}}}{\varepsilon_t^{\text{m}}}$$

Capital good producer with technology

$$K_{t+1} = \Phi\left(\frac{l_t}{K_t}\right) K_t + (1-\delta)K_t \implies q_t = 1/\Phi'\left(\frac{l_t}{K_t}\right) = \left(\frac{l_t/K_t}{\delta}\right)^{\frac{1}{\phi}}$$

Representative household with preferences

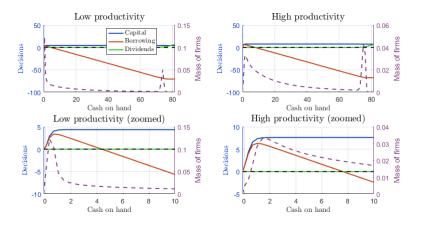
$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\log C_t - \Psi N_t \right)$$

- Owns firms $\implies \Lambda_{t+1} = \beta \frac{C_t}{C_{t+1}}$
- Labor-leisure choice $\implies w_t C_t^{-1} = \Psi$
- Euler equation for bonds $\implies 1 = \beta R_t^{\text{nom}} \mathbb{E}_t \left[\frac{\Lambda_{t+1}}{\Pi_{t+1}} \right]$

	Mode	el	Data	
cash flow	1.08	0.18	0.021	0.021
Tobin's q		0.15		0.008

$$\frac{i_{it}}{k_{it}} = \alpha_i + \alpha_1 \frac{\pi_{it-1}}{k_{it}} + \alpha_2 q_{it} + \varepsilon_{it}$$

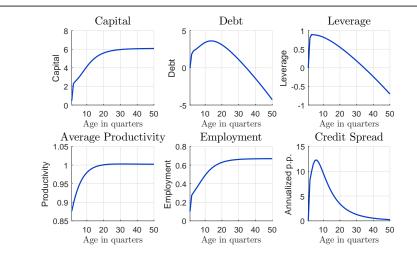
Parameter	Description	Value	
Household			
β	Discount factor	0.99	
Firms			
ν	Labor coefficient	0.64	
θ	Capital coefficient	0.21	
δ	Depreciation	0.026	
New Keynesian Block			
ϕ	Aggregate capital AC	4	
γ	Demand elasticity	10	
$arphi_\pi$	Taylor rule coefficient	1.25	
φ	Price adjustment cost	90	



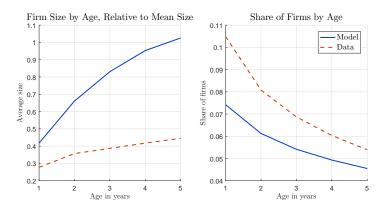
Two key sources of financial heterogeneity

- 1. Lifecycle dynamics
- 2. Productivity shocks

Firm Lifecycle Dynamics • Back



- Young firms riskier than average
- But default risk spread out over large set of firms



- Firms growth more quickly than in data
 - · Data features other sources of lifecycle dynamics
- · Age-dependence of exit rates in line with data

Financial Heterogeneity in the Model and Data

|--|

Moment	Description	Data	Sel. Model	Full Model
Investment	heterogeneity (annual LRD)			
$\mathbb{E}\left[\frac{i}{k}\right]$	Mean investment rate	12.2%	8.83%	20.6%
$\sigma\left(\frac{i}{k}\right)$	SD investment rate (calibrated)	33.7%	31.8%	38.5%
$\rho\left(\frac{i}{k},\frac{i}{k-1}\right)$	Autocorr investment rate	0.058	-0.26	-0.26
Leverage he	eterogeneity (quarterly Compustat)			
$\sigma\left(\frac{b}{k}\right)$	SD leverage ratio	36.4%	76.4%	77.0%
$\rho\left(\frac{b}{k}, \frac{b}{k-1}\right)$	Autocorr leverage ratio	0.94	0.92	0.95
Joint investment and leverage (quarterly Compustat)				
$\rho\left(\frac{i}{k},\frac{b}{k}\right)$	Corr. of leverage and investment	-0.08	-0.16	-0.02

Measured investment-cash flow sensitivity

	Without cash flow		With cas	h flow
	Data	Model	Data	Model
Tobin's q	0.01***	0.06	0.01***	0.02
cash flow			0.02***	0.08
R^2	0.097	0.065	0.104	0.086